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Summary

Human-Computer Interaction migrates from the classic perspective to a more natural

environment, where humans are able to use natural language to exchange knowledge

with a computer. In order to fully “understand” the human’s intentions, the computer

should be able to detect emotions and reply accordingly. This thesis focuses on several

issues regarding the human affects, from various detection techniques to their integration

into a Distributed Interactive System.

Emotions are a fuzzy concept and their perception across human individuals may

vary as well. Therefore, this makes the detection problem very difficult for a computer.

From the affect detection perspective, we proposed three different approaches: an emo-

tion detection method based on Self Organizing Maps, a valence classifier based on

multi-modal features and Support Vector Machines, and a technique to resolve conflicts

into a well known affective dictionary (SentiWordNet). Moreover, from the system inte-

gration perspective, two issues are approached: a Wizard of Oz experiment in a children

storytelling environment and an architecture for a Distributed Interactive System.

The first detection method is based on neural network model, the Self Organizing

Maps, which is easy to train, but very versatile for fuzzy classification. This method

works only with textual data and it uses also an Latent Semantic Analyser (LSA) feature

extraction algorithm with large dictionaries as support vectors. The issue is approached

as a Statistical Machine Learning problem and the validation is conducted on a well

known corpus for semantic affect recognition: SemEval 2007, task 14. This experiment

leads to a classification model that provides a good balance between precision and recall,

for the given corpus.

We continue on the same Machine Learning perspective, by conducting a multi-

modal classification study on a Youtube corpus. The smile, as a gesture feature, is

fused with several other features extracted from textual data. We study the influence

of smile across different configurations, with a two level linear Support Vector Machine.

This offers the possibility to study in details the classification process and therefore, we

obtain the best results for the proposed corpus.

In the field of Emotion Detection the focus is mainly on two aspects: finding the



best detection algorithms and building better affective dictionaries. Whereas the first

problem is tackled by the algorithms previously presented, we also focus on the second

issue as well. We are decreasing the number of inconsistencies of an existing linguis-

tic resource, the SentiWordNet dictionary, by introducing context. This is modelled

as a context graph (contextonyms), built using a subtitle database. By applying our

technique, we managed to obtain a low conflict rate, while the size of the dictionary is

preserved. Our final goal is to obtain a large affective dictionary that can be used for

emotion classification tasks. Decreasing the number of inconsistencies in this dictionary

would directly improve the precision of the method using it.

The contextonyms are cliques in a graph of word co-occurrences. Therefore, these

represent a strong semantic relation between the terms, similar to synonymic relation.

The clique extraction algorithm used for this purpose was designed for building the con-

textonym graph, since none of the existing algorithms could handle large and dynamic

graph structures. Our algorithm, the Dynamic Distributable Maximal Clique Explo-

ration Algorithm (DDMCE), was successfully validated on various random generated

databases.

From the system integration perspective, the problem of Child-Machine interaction

is tackled through a storytelling environment. From the psychological perspective, this

experiment is a validation of the interactive engagement between a child and a virtual

character. The engineering aspects of this experiment lead to the development of a new

Wizard of Oz platform (OAK), that allows online annotation of the data. Moreover,

this environment helps on designing and building new reactive dialogue models, which

can be integrated into our future system.

The second aspect of system integration is tackled by building a new architecture

for a Distributed Interactive System. This is constructed around the idea of compo-

nent based design, where the structure of the component is simple enough to allow the

integration of any existing algorithm. The proposed platform currently offers several

components for knowledge extraction, reactive dialogue management and affective feed-

back detection, among other classic components (i.e. Automatic Speech Recognition,

Text to Speech). Moreover, all the algorithms previously presented can be integrated

into this platform as different components.

Keywords: Affective Feedback, Human-Computer Interaction, Emotion Detection,
Contextualised Dictionaries, Storytelling Environment, Distributed Interactive Systems



Résumé

L’Interaction Humain-Machine a évolué d’une perspective classique vers un environ-

nement plus naturel, dans lequel les humains peuvent utiliser la langue naturel pour

échanger des connaissances avec un ordinateur. Pour bien “comprendre” les intentions

de l’humain, l’ordinateur doit être capable de détecter les émotions et de répondre en

conséquence. Cette thèse porte sur plusieurs aspects de la détection des émotion hu-

maines, en partant de différentes techniques de détection jusqu’à leur intégration dans

un Système Interactif Distribué.

Les émotions sont un concept flou et leur perception par des individus humains peut

aussi varier. Par conséquent, cela rend le problème de détection très difficile en infor-

matique. Du point vue de la détection de l’affect, nous avons proposé trois approches

différentes : une méthode à base de Cartes Auto-Organisatrices (Self Organizing Maps

- SOM ), un classifieur de la valence basé sur des caractéristiques multi-modales et un

Séparateur à Vaste Marge (Support Vector Machines - SVM ) et une technique pour

résoudre les conflits dans un dictionnaire affectif (SentiWordNet). En outre, du point

vue de l’intégration aux systèmes, deux questions sont abordées : une expérience de

type Magicien d’Oz dans un environnement de narration d’histoires pour enfants et une

architecture de Système Interactif Distribué.

La première méthode de détection est basée sur un modèle de réseau neuronal, les

Cartes Auto-Organisatrices, qui est un modèle simple à entraîner, mais très efficace pour

la classification floue. Cette méthode fonctionne uniquement avec des données textuelles

et utilise également une Analyse Sémantique Latente (Latent Semantic Analyser - LSA)

pour l’extraction des caractéristiques avec des grands dictionnaires. La question est

abordée comme un problème d’apprentissage artificiel et la validation est effectuée sur

un corpus pour la reconnaissance sémantique des émotions (SemEval 2007, Tâche 14).

Cette expérience a conduit à un modèle de classification qui offre un bon équilibre entre

précision et rappel pour le corpus donné.

En continuant de nous baser sur des méthodes d’apprentissage artificiel, nous avons

réalisé une étude de classification multi-modale sur un corpus Youtube. Le sourire,

comme caractéristique de geste, est fusionné avec plusieurs autres caractéristiques ex-



traites à partir de données textuelles. Nous étudions l’influence du sourire à travers

différentes configurations, avec un SVM sur deux niveaux. Cela offre la possibilité

d’étudier plus en détail le processus de classification et donc, d’obtenir de meilleurs

résultats pour le corpus proposé.

Dans le domaine de la détection d’émotion, l’accent est mis principalement sur deux

aspects : la recherche des meilleurs algorithmes de détection et la construction de bons

dictionnaires affectifs. Ayant partiellement traité le premier problème dans une partie,

nous nous concentrons également sur le deuxième problème. Nous diminuons le nombre

d’incohérences dans une ressource linguistique existante, le dictionnaire SentiWordNet,

en introduisant le contexte. Ce contexte est modélisé comme un graphe de contexte

(contextonymes), construit en utilisant une base de données de sous-titres. En appli-

quant notre technique, nous avons réussi à obtenir un faible taux de conflits, alors même

que la taille du dictionnaire est préservée. Notre objectif final est d’obtenir un grand

dictionnaire affectif pouvent être utilisé pour des tâches de classification d’émotions. La

diminution du nombre d’incohérences dans ce dictionnaire peut améliorer directement

la précision des méthodes qui l’utilisent.

Les contextonymes sont des cliques dans un graphe de co-occurrences de mots. Par

conséquent, ceux-ci représentent une relation sémantique forte entre termes, comme le

fait également la synonymie. L’algorithme d’extraction de cliques utilisé a été conçu

pour construire le graphe de contextonymes, puisqu’aucun des algorithmes existants ne

permetait la manipulation de graphes de grande taille et dynamiques. Notre propo-

sition, l’Algorithme Dynamique Distribuable pour l’Extraction de Cliques Maximales

(DDMCE), a été validée avec succès sur diverses bases de données générées aléatoire-

ment.

Du point de vue de l’intégration de systèmes, le problème de l’interaction enfant-

machine est abordée à travers un environnement de narration d’histoires. Du point

de vue psychologique, cette expérience est une validation de l’engagement interactif

entre un enfant et un personnage virtuel. Les aspects techniques de cette expérience

conduisent au développement d’une nouvelle plate-forme Magicien d’Oz (OAK), qui

permet l’annotation en ligne des données. En outre, cet environnement contribue à la

conception et la construction de nouveaux modèles de dialogues réactifs, qui peuvent

être intégrés dans notre futur système.

Le deuxième aspect de l’intégration est abordé par la construction d’une nouvelle

architecture pour un Système Interactif Distribué. Cette architecture est basée sur

une conception à base de composants, où la structure d’une pièce est suffisamment

simple pour permettre l’intégration d’un algorithme existant. La plateforme proposée

offre actuellement plusieurs composants pour l’extraction de connaissances, une gestion

réactive du dialogue et la détection du feedback affectif et parmi d’autres composants

plus classiques, comme par exemple la reconnaissance automatique de la parole et la

synthèse vocale. En outre, tous les algorithmes présentés précédemment peuvent être

intégrés dans cette plate-forme comme différents composants.



Rezumat

Interacţiunea dintre om şi calculator porneşte de la modalităţile clasice şi migrează încet

spre un mediu mult mai natural, unde omul are posibilitatea să utilizeze exprimarea

orală pentru a relaţiona cu calculatorul. Pentru a „înţelege” pe deplin intenţiile umane,

calculatorul ar trebui să fie capabil să detecteze emoţiile şi să reacţioneze corespunzător.

Această lucrare se concentrează pe câteva probleme legate de emoţiile umane, acoperind

aspecte legate de la detecţie până la integrarea tuturor acestor elemente într-un Sistem

Interactiv Distribuit.

Emoţiile umane descriu un concept vag care variază de la un individ la altul. Din

perspectiva calculatorului, acest lucru face ca problema detecţiei lor să fie mult mai

dificilă. Pentru a rezolva problema detecţiei emoţiilor, propunem trei abordări diferite:

o metodă de detecţie bazată pe Reţele cu Auto-Organizare (Self Organizing Maps -

SOM ), un clasificator de valenţă bazat pe caracteristici multi-modale antrenate cu o

Maşina de Vectori Suport (Support Vector Machines - SVM ) şi o tehnică de rezolvare

automată a conflictelor semantice dintr-un cunoscut dicţionar afectiv (SentiWordNet).

Totodată, din perspectiva tehnică a lucrării, propunem soluţii la două probleme legate

de interacţiunea dintre om şi calculator: un experiment realizat într-un mediu de tip

„Magicianul din Oz” (Wizard of Oz ) pentru observarea reacţiilor unor copii la ascultarea

unei poveşti şi o arhitectură pentru realizarea unui Sistem Interactiv Distribuit.

Prima metodă de detecţie propusă este bazată pe un model de reţele neuronale:

Reţele cu Auto-Organizare. Aceastea sunt uşor de antrenat, dar foarte utile în cazurile

de clasificare cu anotări vagi sau imprecise. Metoda funcţionează doar pentru date de

tip text şi utilizează un Analizor Semantic Latent (Latent Semantic Analyser - LSA)

pentru extragerea caracteristicilor bazate pe vectori suport de talie mare. Problema

este abordată din perspectiva unui algoritm de instruire automată, iar validarea este

efectuată pe un corpus propus pentru recunoaşterea semantică a emoţiilor: SemEval

2007, problema 14. Experimentul a dus la realizarea unui model de clasificare care

oferă un echilibru între precizie şi acurateţe.

În continuare, în acelaşi context de instruire automata, realizăm un studiu pe o serie

de caracteristici multi-modale extrase folosind un corpus Youtube. Zâmbetul, consid-



erat în acest caz un parametru numeric discret, e fuzionat cu o serie de alte caracteristici

extrase din text. În acest experiment, studiem influenţa zâmbetului combinat cu alte

caracteristici, antrenate cu o Maşină de Vectori Suport pe două nivele. Această config-

uraţie ne oferă posibilitatea de a studia în detaliu procesul de clasificare şi, totodată,

de a obţine cele mai bune rezultate pe corpusul propus.

Domeniul de detecţie automată a emoţiilor umane e concentrat pe două axe princi-

pale: găsirea de algoritmi de detecţie performanţi şi construirea de dicţionare afective.

Interesul nostru este axat pe ambele aspecte, iar prima problemă este abordată de

algoritmii descrişi anteriori. Pentru a scădea numărul de conflicte semantice a unei

resurse linguistice existente (dicţionarul SentiWordNet) am introdus un nou concept

bazat pe contextul unui cuvânt. Acesta presupune construirea unui graf de context, nu-

mit contextonym, utilizând un corpus de subtitrări. Aplicând această tehnică am reuşit

să scădem numărul de conflicte semantice, păstrând neschimbată talia dicţionarului.

Scopul nostru final este să construim un dicţionar afectiv de mari dimensiuni, care

poate fi utilizat în rezolvarea problemelor de clasificare automată. Scăderea numărului

de inconsistenţe în acest dicţionar va creşte în mod direct precizia metodelor care îl

folosesc.

Contextonymele sunt clicuri într-un graf bazat pe coocurenţe de cuvinte, acestea

având o relaţie puternică între ele, similară sinonimiei. Algoritmul folosit pentru ex-

tragerea clicurilor a fost conceput pentru a construi graful de contextonyme, deoarece

nici un algoritm existent nu putea face faţă volumului mare de date şi caracterului

dinamic al acestora. Propunerea noastră, Algoritmul Dinamic şi Distributabil pentru

Explorarea Clicurilor Maximale (Dynamic Distributable Maximal Clique Exploration Al-

gorithm - DDMCE), a fost validat cu succes pe mai multe baze de date conţinând grafe

generate aleator.

Din perspectiva tehnică a tezei, problema interacţiunii dintre copil şi calculator este

abordată prin prisma unui mediu de povestire digital. Din punct de vedere psihologic

acest experiment constituie o validare a angajamentului în interacţiune dintre copil şi

un personaj virtual. Aspectele tehnice ale acestui experiment au condus la dezvoltarea

unei noi platforme (OAK), bazată pe o metodologie de tip „Magicianul din Oz”, care

permite totodată anotarea în timp real a datelor. Acest mediu ajută la prototipizarea

şi construcţia unor noi modele reactive de dialog, care pot fi integrate în viitorul nostru

sistem.

Al doilea aspect tehnic al acestei teze presupune construirea unei noi arhitecturi

pentru un Sistem Interactiv Distribuit. Acesta este centrată în jurul ideii de modelare

bazată pe componente, cu o structură suficient de simplă pentru a permite integrarea

unor algoritmi existenţi. Platforma propusă oferă câteva componente pentru extragerea

conceptelor, managementul reactiv al dialogului sau detectarea feedbackului afectiv, în

plus faţă de componente clasice, oferite de alte sisteme, cum ar fi: Recunoaştere Vocală

sau Sinteză Vocală. Toţi algoritmii prezentaţi anterior pot fi integraţi în acest sistem

sub formă de componente.
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CHAPTER 1

Introduction

1.1 Human-Computer Interaction

The interaction paradigm assumes the continuous reciprocal influence between two in-

dividuals. From another perspective, it is a game where one acts whereas the other

reacts. In computer engineering, the interaction takes place between a computer and

an individual. Historically, this process evolved from a one way communication, where

the computer was playing the role of executor, to a bidirectional communication, with

the system as a communication partner. The communication protocol is changing, as

well, from the classical master-slave perspective to a collaborative environment.

Traditionally, when the computer is just an executor, the input channels formalised

as simple buttons are sufficient to ensure a good level of communication. Nowadays,

the interaction becomes more intuitive. The inputs are a fusion of voice, gestures,

postures or physical signals (such as acceleration, speed, orientation). The buttons still

play a major role in this process, because of their accuracy, but the systems are slowly

migrating towards naturalistic input.

From the computer perspective, the output changed from the classical text inter-

faces to graphical and then to more intuitive ones, such as dialogue oriented interfaces.

The Ambient Intelligence (AmI) field models scenarios where a computer is able to

control the environment in a natural way (i.e. switch on/off lights, execute daily tasks,

communicate through spoken language) [52, 173]. Moreover, the computers may have

a personified appearance (i.e. an Embodied Conversational Agent (ECA) [154, 40] or a

Robot [64]) or even a personality [175]. More formally, we will use throughout this thesis

the concept of agent to describe an intelligent entity, such as an interactive system.

Current approaches describe the human-computer interaction as a collaborative,

dialogue-based, task [6]. Both interaction and dialogue task involve rich exchange of

information between at least two peers. The richness of input refers to the possibility

to use multi-modal exchange in the communication process: spoken language, gestures,
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postures, vocalisations. The main difference between the two aspects is that, usually,

the dialogue involves knowledge management, whereas the interaction can be strictly

reactive. So far, softer reactive dialogue models have been proposed, without being

sufficient to ensure a good communication level [136]. In our work, we refer to dialogue

as a model where certain level of response planning and knowledge management is

involved, and to interaction as a model that is mainly reactive.

Both dialogue and interaction models involve feedback detection and generation.

Several levels of feedback can occur at any point through the information exchange

process [37, 8]. These include: perception feedback (positive if the phrase can be

transcribed, negative in case of failure), interpretation (positive if the phrase can be

interpreted correctly according to the rules describing the system, negative in case of

a misinterpretation) or execution feedback (positive if a satisfactory response is gener-

ated, negative otherwise). Out of these, a special category of feedback is represented by

the human emotions. They do not act directly at a certain feedback level, previously

described, but influence them all. For example, a negative emotion in the context of a

perception failure can influence the response style. Instead of replying a simple phrase,

such as: “I am sorry, but I do not understand”, the agent could also build a solution

for the problem: “I am sorry, but I do not understand. I would increase the volume of

the microphone and let you try again.”. In this example, the system is able to detect

frustration, as a negative emotion, and propose a solution instead of just giving the

result error.

Affect Oriented Modelling

In this perspective, R. W. Picard is one of the first computer scientist working in

Affective Computing, to offer a new point of view for engineers [151]. In order to

make human-computer interfaces more interactive, the author proposed to integrate

emotional models into existing approaches. The problem has been described not as

a strict detection or simulation issue, but with very fuzzy boundaries. One of the

challenges underlined by Picard is that such systems would balance the detection rate

against the user’s satisfaction.

According to Oxford Dictionary [142], the Online Edition, an emotion is a strong

feeling deriving from one’s circumstances, mood, or relationships with others. On the

other hand, the opinions are the beliefs or views of a group or a majority of people.

From a general perspective, an emotion is more complex and fuzzy than an opinion.

Usually in opinion mining field, the literature refers to the valence (negative or positive)

of a certain opinion [28], which is a simplified model of an affective intensity.

From the psychological perspective, P. Ekman proposed his original emotion model

[56, 54] using only six basic emotions, considered as universal and recognizable all

around the world: Anger, Disgust, Fear, Happiness, Sadness, Surprise. This work

is the foundation of the Universality Theory [45], which states that all living beings

express emotions in the same way. W. James is one of the two pioneers in the field

of physiological perception of an emotion, foundation for most of the signal processing
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techniques [92].

Even with some controversies in the area, several European inter-disciplinary or-

ganizations decided to launch ambitious projects such as HUMAINE Consortium [86],

which aims at linking different research communities, all working on the idea of human

centred research. The initial phase of the project finished with the release of the HU-

MAINE database [49], that contains a video corpus annotated with different schemes,

among which a basic set of tools needed to analyse the data. The project continues as

an excellence network, with a lot of researchers involved.

More recently, the SEMAINE consortium, as part of the HUMAINE Excellence

Network, finished a project that focuses on the multi-modal detection aspect [175]. The

Sensitive Artificial Listener (SAL), proposed by SEMAINE, is able to detect human

emotions based on face gestures and several qualitative speech features. Besides this,

the AVEC Challenges [179] propose a set of annotated corpora to solve the same issue.

1.2 Original aspects of this thesis

None of the previous presented works focuses on the semantic level. Humans, in every-

day interaction, use natural language, among other modalities, to exchange information.

The semantic level corresponds to the information transmitted, to what is being ex-

changed. The gestures, postures and vocal features are linked to the transmission style,

or how things are being transmitted. We agree that the fusion of multi-modal features

is a difficult task, but we also state that the semantic part of the communication has

to play an important role into the detection process: the how and what have to be

considered together.

Currently, the semantic context of affective words is very poorly exploited. When

it is done, in most cases, manually annotated linguistic resources are proposed. We

suggest an approach that deals with context in affective dictionaries which is generated

automatically out of linguistic resources freely available over the web.

In order to make the machines “understand” human emotions [151], the algorithms

that deal with affect detection and simulation need to be integrated into a system.

Moreover, many of the problems regarding affect-oriented interaction systems are cur-

rently solved (partially or entirely). Therefore, the integration of all these components

into a unified platform becomes critical. Our proposition, AgentSlang, is built around

the idea of component integration and provides an architecture for this purpose. Many

other important steps have to come, but even so, this platform remains one of the

biggest contributions of this thesis.

Long Term Goal

The intelligence is characterised by the ability to acquire and apply knowledge and

skills [142]. Building an intelligent agent, described by these abilities, is a very difficult

task. Nevertheless, such a behaviour can be simulated by integrating feedback detection

mechanisms, which would make the whole system more interactive [151].
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The final goal of this work is to build a natural interactive environment, by using

Embodied Conversational Agents or Robots. The approaches proposed are reactive,

based on the semantic feature extraction and emotions detected in a multi-modal con-

text. The usage of affects would increase the interactiveness of the system, while being

able to provide real-time feedback for a dialogue model.

1.3 Structure of the thesis

This thesis investigates two main directions: algorithms used to detect user’s emotional

feedback or to build affective linguistic resources, and systems constructed around the

interaction paradigm. Figure 1.1 presents a detailed structure of this thesis, with links

between several sub-projects.

Detection of User's 
Affective Feedback

Building an 
Interactive System

OAK

MyBlock

Syn!bad

AgentSlang

SOM Detector

Multi-Modal
Detector

Contextualized
Dictionary
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3

Legend:

Future work

Implemented

Existing Component

Goal / Problem

Figure 1.1: The thesis structure and the interaction between different parts

As stated before, the goal of this thesis is to build a system that deals with natural

interaction. Several aspects of this problem need to be discussed:

1 The problem of natural interaction is linked to emotions and affect detection. This

is one of the major parts of this thesis.

2 Due to the lack of rich interaction data, especially for children, an experiment

dealing with corpus collection was performed.
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3 The design of an interactive system is proposed, which integrates several existing

algorithms.

The problem of Affective Feedback Detection is tackled first by a Self Organizing

Maps (SOM) Algorithm (c10). This approach led to a second algorithm, which uses

multi-modal features and a Support Vector Machine (SVM) to detect emotions (c4).

These models are described in Chapter 2.

While developing the SOM algorithm, we observed that the existing linguistic re-

sources are not accurate enough to be used in affective detection tasks. Therefore, we de-

veloped a new methodology to create a context based affective dictionary (c3)(c7)(p1).

First, a new clique exploration algorithm was developed (j1)(c8), which was applied

afterwards on a subtitle corpora, annotated with SentiWordNet [11] valences. All these

approaches are described in Chapter 3. In the future, this resource could be used as

a dictionary for the multi-modal affect detector, described in Chapter 2.

On the System part, Chapter 4 does a brief description of the protocol, formalised

as a Wizard of Oz scenario, used to collect interaction data from a storytelling envi-

ronment. Technical aspects of the experiment are described as well, by presenting the

Online Annotation Toolkit (OAK) (j2)(c2)(d1). Moreover, several psychological re-

sults are presented to support our hypothesis, that the interaction between a child and

an avatar has similar characteristics with the interaction between a child and an adult

in video conference mode (c5)(c6).

Chapter 5 presents the architecture of the MyBlock, Syn!bad and AgentSlang

projects (c1)(c9). These are systems that allow easy modelling of component based

design for building agents that deal with rich feedback data. Moreover, for the knowl-

edge extraction part, the Syn!bad library is described.

In future, the interaction model computed from the data collected with the OAK

platform would be compiled into a reactive model, which will be integrated into

AgentSlang. The multi-modal emotion detection algorithm and the contextualized af-

fect dictionary would be integrated as well into the same platform.

1.4 Publication list
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17



1.4. PUBLICATION LIST

Conferences

(c1) O. Şerban and A. Pauchet. AgentSlang: A Fast and Reliable Platform for Dis-

tributed Interactive Systems, International Conference on Intelligent Computer

Communication and Processing (ICCP). 2013.

(c2) O. Şerban, A. Pauchet, A. Bersoult, and E. Chanoni. Tell me a story: A com-

parative study of child interaction with virtual characters and adults, Thirteenth

International Conference on Intelligent Virtual Agents (IVA). 2013.

(c3) O. Şerban, A. Pauchet, A. Rogozan, and J-P. Pecuchet. Modelling context to

solve conflicts in SentiWordNet, The fifth biannual Humaine Association Confer-

ence on Affective Computing and Intelligent Interaction (ACII). 2013.

(c4) O. Şerban, G. Castellano, A. Pauchet, A. Rogozan, and J-P. Pecuchet. Fusion

of Smile, Valence and NGram features for automatic affect detection, The fifth

biannual Humaine Association Conference on Affective Computing and Intelligent

Interaction (ACII). 2013.

(c5) A. Pauchet, F. Rioult, E. Chanoni, Z. Ales and O. Şerban. Advances on Dialogue

Modelling Interactive Narration Requires Prominent Interaction and Emotion, In

Joaquim Filipe and Ana Fred, editors, Proceedings of the 5th International Con-

ference on Agents and Artificial Intelligence, volume 1, pages 527–530, SciTePress,

2013.

(c6) A. Pauchet, F. Rioult, E. Chanoni, Z. Ales and O. Şerban. Modélisation de

dialogues narratifs pour la conception d’un ACA narrateur, Proceedings of the

WACAI 2012 - Workshop Affect, Compagnon Artificiel, Interaction, 8 pages, 2012.

(c7) O. Şerban, A. Pauchet, A. Rogozan and J-P. Pecuchet. Semantic Propagation on

Contextonyms using SentiWordNet, Proceedings of the WACAI 2012 - Workshop

Affect, Compagnon Artificiel, Interaction, 7 pages, 2012.

(c8) O. Şerban, A. Pauchet, A. Rogozan and J-P. Pecuchet. DDMCE : recherche de

cliques maximales dans des graphes dynamiques de grande taille, Proceedings of

the 3ième Journée thématique : Fouille de grands graphes, 5 pages, 2012.

(c9) Z. Ales, G. Dubuisson Duplessis, O. Şerban and A. Pauchet. A Methodology

to Design Human-Like Embodied Conversational Agents, Proceedings of the 1st

International Workshop on Human-Agent Interaction Design and Models, pages

34-49, 2012.

(c10) O. Şerban, A. Pauchet, and H.F. Pop. Recognizing emotions in short text. In

Joaquim Filipe and Ana Fred, editors, Proceedings of the 4th International Confer-

ence on Agents and Artificial Intelligence, volume 1, pages 477–480. SciTePress,

2012.

18



Detection and Integration of Affective Feedback into Distributed . . . Ovidiu Şerban

Demo

(d1) O. Şerban and A. Pauchet. OAK: The Online Annotation Kit, Proceedings of

the WACAI 2012 - Workshop Affect, Compagnon Artificiel, Interaction, 2 pages,

2012.

Poster

(p1) O. Şerban, Adding affective states to contextonyms, International Workshop on

Voice and Speech Processing in Social Interactions, Glasgow, UK, 2011

19





Part I

Detection of User’s Affective

Feedback

21





CHAPTER 2

Emotion detection in dialogues

"Any emotion, if it is sincere, is involuntary."

– Mark Twain

Contents

2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Psychological Perspective . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Engineering Perspective . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Affect Detection Methods . . . . . . . . . . . . . . . . . . . . 26

2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Emotion detection in short texts . . . . . . . . . . . . . . . . 28

2.5 The Emotion Classification Model . . . . . . . . . . . . . . . 30

2.5.1 The Self-Organizing Map Algorithm . . . . . . . . . . . . . . 31

2.5.2 Preprocessing Step . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.3 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.4 Self-Organizing Map Model . . . . . . . . . . . . . . . . . . . 34

2.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6 The dialogue characteristics . . . . . . . . . . . . . . . . . . . 37

2.6.1 Youtube Opinion Corpus . . . . . . . . . . . . . . . . . . . . 38

2.7 Multi-modal Affect Detection . . . . . . . . . . . . . . . . . . 40

2.7.1 Classification Model . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.2 SVM Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.3 Training and testing sets . . . . . . . . . . . . . . . . . . . . . 42

2.7.4 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . 43

2.7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

23



2.1. CONTEXT

2.1 Context

Interactive Systems become more and more popular, therefore rich interaction between

humans and computers is considered a priority. In order to increase the interactivity of

the existing systems, the computers “need to understand” human emotions [151].

Concerning textual interaction, emotion detection has been approached by several

research groups, each of them with its own specificity. In the field of Sentiment Analysis

and Emotion Detection based on text data, two main directions for research exist: one

concentrating on building better annotations of linguistic resources, such as dictionaries

or ontologies [188, 11], and the other on building better classifiers for valence, sentiment

or emotion detection [198, 187, 28]. This chapter focuses on classification approaches

to detect emotion or valence in dialogue data. Several surveys [28, 73, 134] study

these classifiers and group them based on: classification labels (continuous or discrete),

methods and features (text or multi-modal).

Most of these methods base their approach on large collections of annotated doc-

uments, which serve as a training set. In a more specific scenario, such as dialogue

systems, the length of a phrase is shorter than in publicist style, even if this is linked

sometimes to oral communication or to a very familiar style. The text recovered from

blogs, online comments, forums, journals or books, is more likely to be rigid, and re-

specting a formal style of writing and quality. Chat and dialogue, on the other hand,

are, most of the time, the opposite of this. They are both represented as a written text,

because dialogue is in most of the cases transcribed, the style and norms are not the

same.

The chat scenarios we envision are modelled as an interaction between two or mul-

tiple parties, by using any software application that allows this type of communication.

It also allows the recovery of the exchanged information (i.e. chat logs). The chat uses,

most likely, a very specialised internet language, created to shorten the exchanged infor-

mation to the minimum, called internet slang (i.e. Internet short-hand, leet, netspeak

or chatspeak). Most of the chat would have emoticons available, which are a set of

text conventions which can be translated into a set of animated or non-animated faces,

representing moods, feelings, states of mind or communication gestures (i.e. waiving).

The dialogue data consists in any transcribed text log, as the result of verbal inter-

action between one or multiple parties. These logs can be annotated with the identity

of the speaker or this information can be recovered from the voice track. Usually, the

transcription does not use the same internet slang nor emoticons as a chat system does.

The recovery of these logs could be done online (when the information is available in

real-time) or offline, structured as a corpora.

In the following section, we present the state of art on Affective Computing [151],

starting with several psychological and engineering aspects of the problem. We con-

tinue with the engineer’s perspective and a short survey of the most important methods

used for affect detection. The following sections cover the emotion classification model

we proposed, based on a Self-Organizing Maps algorithm and applied on the SemEval

corpus. A multi-modal affect detection approach applied in a dialogue context is in-
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troduced afterwards by presenting an SVM classifier, applied on a Youtube corpus. At

last, we conclude this chapter with a brief discussion.

2.2 Related work

2.2.1 Psychological Perspective

Paul Ekman proposed an original emotion model [56, 54] using only six basic emotions,

considered as universal and recognizable all around the world: Anger, Disgust, Fear,

Happiness, Sadness, Surprise. However, he expanded this list in a revision of his initial

work [59], by introducing 12 new emotions: Amusement, Awe, Contempt, Enjoyment,

Embarrassment, Excitement, Guilt, Pride in Achievement, Relief, Satisfaction, Sensory

pleasure, Shame. These emotional are not meant to be exclusive. In fact, in more com-

plex models, these emotions may occur in various intensities and different combinations.

Paul Ekman also developed in collaboration with W.V. Friesen [57] and Dr. E. Rosen-

berg [58] the Facial Action Coding System (FACS), an annotation system dedicated to

areas where emotion detection is considered critical.

Even if the universality of these emotions has been documented by multiple studies

[56, 54, 92], some psychologists, such as J. A. Russell [165], noticed minor contradictions.

Russell observed social and cultural situations where emotions are altered to something

different from the universal belief; he explained that certain communities do not have

an equivalent for the English word “fear”. In the defence of the universal theory, other

authors [65], found relations between emotions and language, as speech is considered as

one of the vital aspects of affect expression, but not the only one, and created models

where the social relations and background of individuals are the most influential aspects

of emotion detection and expression. In this context, Russell’s observation is a problem

of linguistic expressiveness, as some words could have only a meta-linguistic equivalent,

such as a gesture or interjection.

More recently, Scherer et al. [171] defines the emotions as “dynamic episodes char-

acterized by a high degree of coordination between several organismic subsystems in the

interest of optimal adaptation to relevant events”. Moreover, the emotions have features

related to specific events, affect most of the body functions in a synchronised way, are

subject to rapid change and have a strong impact on behaviour generation [172].

2.2.2 Engineering Perspective

William James is one of the two namesakes of the James-Lange theory of emotions [92],

which he formulated independently of Carl Lange in the 1880s. They were pioneers in

the field of physiological perception of an emotion, foundation for most of the signal

processing techniques.

In this perspective, R. W. Picard is one of the first engineers working in Affective

Computing, offering a new point of view to engineers and computer scientists [151].

In order to improve human-computer interfaces, she proposed to integrate emotion

detection engines. She described the problem not as a strict detection issue, but one
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with very fuzzy boundaries. One of the challenges underlined by Picard is that such

systems should balance the detection rate against the user’s satisfaction.

From the Computer Science perspective, emotions are encoded usually into a numer-

ical representation, by defining the probability of a certain emotional state or opinion to

occur. In some cases, a corpus is annotated with the presence/absence of an emotional

state, without any reference to the occurring probability. Therefore, a computer should

be able to detect the affects in both these cases.

2.2.3 Affect Detection Methods

Ochs et al. [134] presents a series of systems that can be used for emotion detection,

which exploits acronyms, emoticons, most common spelling errors and internet slang.

These approaches use dictionaries and statistical machine learning to represent their

features. Unfortunately, none of these algorithms are publicly available and they do not

deal with dialogue data.

Calvo et al. [28] presents a comparative study of the algorithms used in Affective

Computing, which are grouped by modality: visual features, vocal or text. Each modal-

ity is processed independently. Gunes et al. [73] presents a survey for the multi-modal

feature fusion, mainly from the visual and acoustic perspective.

As a synset database example, we mention WordNet Affect [188], an extension of

the WordNet [123] data set. WordNet Affect is basically a 6 class emotional anno-

tation (i.e. Ekman’s basic annotation scheme) made on a synset1 level; it contains

nouns, adjectives, adverbs and some verbs for the English WordNet 2.0 version. Con-

ceptNet [113] is another well-known ontology widely used for semantic disambiguation

in classification tasks. This database contains assertions of commonsense knowledge

encompassing the spatial, physical, social, temporal, and psychological aspects of ev-

eryday life. ConceptNet was generated automatically from the Open Mind Common

Sense Project. Another database, used especially for opinion and valence classification,

is SentiWordNet [11] which is the result of automatic annotation of all WordNet synsets

according to their degrees of positivity, negativity, and neutrality.

Starting from WordNet Affect, Valitutti et al. [198] proposed a simple word presence

method in order to detect emotions. Ma et al. [116] designed an emotion extractor

from chat logs, based on the same simple word presence. SemEval 2007, task 14 [187]

presented a corpus and some methods to evaluate it, most of them based on Latent

Semantic Analyser (LSA) [53] and WordNet Affect presence [187].

Methods more related to signal processing were proposed by [9], [44], or [47] which

introduces different solutions in the classical approach of the field, for feature extraction,

selection and classifiers. Alm et al. [9] used a corpus of child stories and a Winnow

Linear method to classify the data into 7 categories. Using the ISEAR [204] dataset, a

very popular collection of psychological data around 1990, [44] used different classifiers

such as Vector Space Model (VSM), Support Vector Machine (SVM) or Naive-Bayes

(NB) method to distinguish between 5 categories of emotions.

1A WordNet synset is a synonym collection attached to a sense of a word
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The research involving text content concerns the detection of any kind of emotion

in written text or transcripts of oral communication. The first approaches were done

by some psychologists and anthropologists that were able to annotate and evaluate

the semantic value of certain words. Charles E. Osgood conducted experiments to see

how certain emotions can be inducted through text [137]. In order to measure the

affective state, he used multidimensional scaling (MDS [22]) to create a visualisation of

the affective space, based on the similarities between subjects from different cultures

[138].

Morency et al. [126] builds one of the first multi-modal corpora dealing with text,

voice and visual features. The prediction is done at the video level, and the text features

are extracted using an affective dictionary. The gestures considered for the task are smile

and eye gazing, which is associated usually with energy rather than emotion.

The AVEC Challenges [179] are multi-modal affect detection competitions, which

provide a unique corpus, a set of features already extracted and a baseline comparison

algorithm. Unfortunately, the transcription language proposed for the latest corpus is

not consistent with the existing text dictionaries. This makes the design of a semantic

extraction algorithm very difficult.

One of the most influential articles in affective computing, written by Gunes and

Schuller [73], argues that the affective human behaviour analysis should be done in a

continuous input setting, since it simulates well the natural environment. The continuity

setting refers to a model able to classify segment or frame based inputs. Moreover, a

model based on valence (the degree of positivity/negativity), arousal (being awake or

reactive to stimuli) and energy (the power expressed by the actor), should be preferred.

By using this model, detecting valence properly increases the precision of any multi-

modal affect detection system.

Unfortunately, in the past AVEC Challenges [179] the participants preferred to use

the spontaneous voice and visual features, rather than using semantic characteristics.

Our approach defends the importance of the semantic level in the task of affective infor-

mation detection and highlights that some gestures, such as smile, boosts the detection

rate. Moreover, we concentrate our approach on segment based detection, rather than

predicting a single label for a whole video sequence. Our approach models a text and

gestures fusion, by integrating low level features extracted from dialogue data with vi-

sual features, such as smile. The corpus used in our experiments is the one proposed by

Morency et al. [126] in their experiments, because it models a dialogue situation and

offers the opportunity to compare the results.

In the following sections, we present the two problems (i.e. chat and dialogue data)

as being the same, because despite some specific pre-filtering steps, both data sources

consist in short sentences, which can refer a dialogue context. We present our contri-

butions on detection of emotional labels in short texts and a fusion approach, suitable

for multi-modal dialogue systems.
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2.3 Preliminaries

In order to preserve a certain uniform distinction between the technical terms used

across this thesis, we introduce a set of definitions, as present in the online edition of

the Oxford Dictionary2:

Word: A single distinct meaningful element of speech or writing, used with others

(or sometimes alone) to form a sentence and typically shown with a space on either

side when written or printed.

Term: Logic of a word or words that may be the subject or predicate of a propo-

sition.

Occurrence: The fact of something existing or being found in a place or under

a particular set of conditions.

Accordingly, the item word is used either as a part of a phrase or by its more generic

term, as an occurrence in a dictionary.

2.4 Emotion detection in short texts

In the area of dialogue systems and feedback detection, short text is represented mainly

by the phrases exchanged between the dialogue partners. Finding a proper annotated

corpus to train and test different statistical machine learning technique proves to be a

very difficult task. Our first choice is a corpus of short sentences, consisting in news

headlines, extracted from various websites and provided by Strapparava and Mihalcea

[187].

Emotions Corpus

The chosen corpus for our experiment was proposed for SemEval 2007, task 14 [187],

published at the conference with the same name. The data set contains headlines (news-

paper titles) from major websites, such as New York Times, CNN, BBC or the search

engine Google News. The corpus was chosen since its characteristics and structure suits

our problem requirements and we could easily compare our results with other systems

that participated to the SemEval task.

The corpus was manually annotated by 6 different persons. They were instructed

to annotate the headlines with emotions according to the presence of affective words or

group of words with emotional content. The annotation scheme used for this corpus is

the basic six emotions set, presented by Ekman: Anger, Disgust, Fear, Joy (Happiness),

Sadness, Surprise. In situations were the emotion was uncertain, they were instructed

to follow their first feeling. The data is annotated with a 0 to 100 scale for each emotion.

A valence annotation was also carried out. Valence, as used also in psychology,

means the intrinsic attractiveness (positive valence) or aversiveness (negative valence)

2http://www.oxforddictionaries.com/
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of an event, object, or situation. In SemEval task, the valence is used to describe the

intensity of the positive or negative emotion. The valence label ranged from -100 to

100.

The recommendation for the task competition was to classify the data in an unsu-

pervised manner. The corpus was split into testing and training section. Participants

were allowed to create their own resources, without any obligation to share them with

other competitors. To correlate the data from the 6 annotators, the authors established

an inter-annotator agreement which resulted with a Pearson correlation coefficients. It

enables to adjust the results obtained by each system with the data labelled by the

annotators.

Table 2.1 presents examples of headlines from the corpus, among with their sig-

nificant emotions. The scale of the emotions was normalized by 100 (translating all

the values into a -1.0 to 1.0 interval), and the significant emotions were chosen in the

neighbourhood of the dominant emotion (all the values between 20% range).

A D F J Sad. Sur. Headline

- - - 0.15 0.25 - Bad reasons to be good

- - - - - 0.36 Martian Life Could Have Evaded Detection
by Viking Landers

- - 0.68 - - - Hurricane Paul nears Category 3 status

- - - 0.75 - 0.57 Three found alive from missing Russian ship
- report

0.52 0.64 0.50 - 0.43 - Police warn of child exploitation online

Anger=A, Disgust=D, Fear=F, Joy=J, Sadness=Sad., Surprise=Sur.

Table 2.1: Headlines from the training corpus, presented with dominant emotions

The authors of the corpus proposed a double evaluation, for both valence and emo-

tion annotated corpus, on a fine-grained scale and on coarse-grained scale. For the

fine-grained scale, for values from 0 to 100 (-100 to 100, for valence), the system results

are correlated using the Pearson coefficients computed in the inter-annotator agreement.

The second proposition was a coarse-grained encoding, where every value from the 0 to

100 interval is mapped to either 0 or 1 (0 =[0,50) , 1=[50,100]). Considering the coarse-

grained evaluation, a simple overlap was performed in order to compute the precision,

recall and F-measure for each class.

Another important aspect of this corpus is the emotion distribution inside the data

set. In the figures 2.1 and 2.2, some dominant classes can be observed, as the negative

class for the valence. For emotions, Sadness, Joy and Fear are the dominant clusters,

since the intensity should be as high as possible (lower intensities are influenced by

annotation noise). These are easy to annotate by humans experts, as it can be observed

in the inter-annotator agreement [187].
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Figure 2.1: Emotional label distribution over the training corpus.

Figure 2.2: Valence distribution over the training corpus.

2.5 The Emotion Classification Model

The classifier we have chosen is a commonly used unsupervised method, the Self-

Organizing Map (SOM) [105]. This method, proposed by the Finish professor Teuvo

Kohonen, and sometimes called Kohonen maps or self-organizing feature map, is a par-

ticular type of neural network used for mapping large dimensional spaces into small

dimensional ones. The SOM has been chosen because: 1) it usually offers good results

in fuzzy data, 2) the training process is easier than with other Neural Networks and

3) the classification speed is sufficiently high for our problem. We start this section by

introducing the SOM algorithm.

Our technique requires a multi-step process, each step assuring the output for the

next phase. The first step, also called preprocessing, consists in filtering and cleaning

the text information. The feature extraction and a projection follows, by using multiple
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LSA strategies. In the third step, the SOM algorithm is applied and the trained model

is used in the classification step. The two first steps are used both for the training and

testing corpus, whereas the SOM algorithm is applied only during the training phase.

2.5.1 The Self-Organizing Map Algorithm

The SOM is a special type of neural networks used for unsupervised training. As for

any machine learning algorithm, the data is split into training and testing. The data

samples are defined as: X = {xk|xk ∈ Rn}, for the training set and Y = {yk|yk ∈ Rn}

for testing.

The method uses a grid configuration of neurons, where each one is connected to

its nearby neighbours. The neurons are weights (Wi,j ∈ Rn), initialised with random

values, that need to be fitted by the training algorithm. The size of the network is

defined as nsom for the width and msom for the height.

The training process is iterative and the number of iterations T can be decided as

the maximal point where the model begins to overfit the training data. Usually, this

parameter is computed empirically over a series of training, while the overfitting error

is computed through a cross validation. Figure 2.3 describes the training process of a

SOM model.

σ t

Wi,j

Figure 2.3: The training process for a SOM model. The σt radius describes the training
neighbourhood for the current neuron Wi,j

The central piece of the training and classification algorithm is the Best Match-

ing Unit (BMU) measure. The BMU is computed as an Euclidean distance over

two given individuals, neurons or data sample. The equation for the BMU distance

(distbmu(a, a
′); a, a′ ∈ Rn) is given by the following (equation 2.1):

distbmu(a, a
′) =

√
√
√
√

n∑

i=1

(ai − a′i)
2 (2.1)

At each iteration (t), for every new training sample (xk ∈ X ), the BMU (neuron
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Wi,j) associated to xk is defined as by the following:

BMU(xk) = min
Wi,j

distbmu(xk,Wi,j) (2.2)

For a given neuron (Wi,j), the training radius (σt) is define as:

σt = σ0 × exp(−
t

λ
) (2.3)

σ0 = λ =
T

log(max(nsom,msom)
2 )

(2.4)

where: t is the current iteration of the training process, T is the total number of

iterations and nsom, msom are the width and height or the network.

This radius defines the σt neighbourhood, where the BMU training influence is

spread. To complete the training process, the following equation is defined for all the

neurons ω, contained in the neighbourhood of the BMU (the neuron Wi,j):

ωt+1 = ωt +Θt × Lt × (xk − ωt) (2.5)

where the Learning Rate, Lt, is:

Lt = L0 × exp(−
t

T
) (2.6)

and the BMU Influence Rate, Θt, is:

Θt = exp(−
distbmu(ω,Wi,j)

2

2× σ2
t

) (2.7)

The BMU has two roles in this algorithm: 1) as the best fitting neuron for a given

sample and 2) it spreads the information already learned across nearby neighbourhood.

This speeds up the training process and allows the creation of neuron clusters having

the same properties. The Learning Rate and σ neighbourhood decay over time, which

allows the learning process to concentrate over smaller parts of the network and to

create better fittings for the data. Moreover, the BMU Influence Rate decays over the

distance from the BMU, which allows the neighbouring neurons to learn at a higher

rate, whereas distant ones still preserve the information they learned independently.

For the classification part, we used the same measure as during the training phase,

which computes a distance from a proposed individual to all the elements in the SOM

grid. The Best Matching Unit (BMU(yk)) is selected, i.e. the element of the grid which

is closest to the desired individual.

This training algorithm uses the numeric features extracted from the training and

testing data. This process of extraction is described by the following sections.
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2.5.2 Preprocessing Step

During the preprocessing step, we applied on each headline a collection of filters, in

order to remove any useless information, such as special characters and punctuation,

camel-case separators and stop word filtering. We considered as stop words, all prepo-

sitions, articles and other short words that do not carry any semantic value. The stop

word collection used in our experiment is available at: http://www.textfixer.com/

resources/common-english-words.txt. To reduce the space, we kept only the words

that are considered to carry a strong semantic and emotional value, as WordNet Affect

is suggesting [188].

This method offers a good balance between speed and accuracy of the results, com-

pared to other methods such as Part of Speech Tagging (POS), which provides compa-

rable results, but tends to be slower.

2.5.3 Feature Extraction

From the feature extraction perspective, we have chosen a Latent Semantic Analysis

(LSA), applied with three different strategies. LSA is a well known strategy in Natural

Language Processing field for measuring similarities between multiple documents and

collections of terms. LSA assumes that words semantically close can be found close

together in texts. Hence, all the occurrences of key terms are counted and introduced

in a matrix (a row for each keyword, a column by document or paragraph). A Singular

Value Decomposition (SVD) is applied on the resulted matrix in order to obtain the

weighted similarities. In our experiments, the document collection is represented by

the headlines corpus, where each headline is a separate document and the term set is

chosen according to three different strategies.

The first LSA strategy we implemented concerns the algorithm applied onto the

words of the WordNet Affect database [188]. This method is called by C. Strapparava

and R. Mihalcea pseudo-LSA or meta-LSA [187]. The meta-LSA algorithm differs from

the classic implementation by using clusters of words instead of single words in the LSA

algorithm. The clusters are formed by the WordNet Affect synsets, available in the

database. We expect the recall of the classifier to increase, but the precision to be low,

which confirms the results of R.Mihalcea and C. Strapparava.

This strategy did not provide the expected results: the recall decreased since all

of the presented words were carrying an emotional value and the non-emotional words

were not represented. Our implementation confirms the results obtained by R.Mihalcea

and C. Strapparava.

The second set of features was still extracted using the classic LSA, but applied

onto the words of the training set. This strategy aims at refining the word collection in

order to fully qualify all the input data. Although the genericness of this approach is

not assured by the support word collection, this method offers a good starting point in

document similarity experiments when the testing and training corpus are similar.

Our third proposition was to use the top 10 000 most frequent English words (except

the stop words), extracted from approximately 1 000 000 documents existing in the
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Project Gutenberg3. This corpus has been chosen as the largest free collection available

and it offers a clear image over the English language. The words are used as key terms

in the k-LSA strategy [53].

The features used are the document similarities obtained after applying the LSA

algorithm. The SVD decomposition is applied on X, the initial occurrences matrix:

X = U ∗ Σ ∗ V T (2.8)

The k-LSA version eliminates the null values from the Σ diagonal matrix and k is

the reduction index. The resulting matrix becomes Xk, which is a sub-matrix of size k

of the initial matrix X. In practice, after applying the k-LSA algorithm, the Xk will

be used as the X matrix in future computations.

After the feature extraction, the feature selection is performed in order to limit the

feature space, which is done automatically with the k-LSA algorithm.

For the training part, the feature vectors are the columns from the V T matrix,

which represent the document similarities. For testing, a feature projection is done by

translating the new occurrence matrix into the document space:

X ′ = Σ−1 ∗ UT ∗X (2.9)

where X is the occurrence matrix computed on the testing corpus.

2.5.4 Self-Organizing Map Model

Many of the proposed implementations of the Self-Organizing Map use the feature model

or a linear combination of the features for classification. Our implementation is very

close to the classic one, but the feature space and classes were split into two distinct

concepts and the classes are not used actively in the self-organizing algorithm; data

and label vectors are separated in the Self-Organized Nodes and the learning process

is done similarly for both of the vectors, with the same parameters.

During our experiments, a 40 × 40 grid size was used for the SOM configuration.

The feature vectors were the document similarity vectors obtained from the feature

extraction step, i.e. the columns of the V T matrix obtained in the SVD decomposition

from the LSA algorithm. As for the labels, we used the intensities available in the corpus

as an independent vectorial space. The SOM technique was performed only for the

projection of the original data into a bi-dimensional space and the actual classification

was done by another step, described in the next section.

Because this method is mainly used in a visual manner to classify the results, we

also built a visualisation module for easier evaluation of the method. Since a complex

labelling technique was used, with 6 emotions represented by their probability of occur-

rence, a color was assigned to each emotion. The results can be interpreted in two ways:

the representation of only one dominant emotion (figure 2.4) and the representation of

3Project Gutenberg is a large collection of e-books, processed and reviewed by the project commu-
nity. All the documents are freely available at the website: http://www.gutenberg.org/
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the most dominant emotions (figure 2.5).

Figure 2.4 represents the dominant emotion, after the learning process is finished.

Darker zones represent more intense emotions. This visualisation shows that by using

the SOM algorithm, the result converges to a structured model. This visualisation is

inspired by the original SOM article [105].

Figure 2.4: The dominant emotion visualisation, where darker zones represent stronger emotion.
Colour legend: Anger, Disgust, Fear, Joy, Sadness and Surprise

Our implementation of the SOM model does not use a single label representation.

Instead, we have 6 different values, each corresponding to a different emotion. Using

only a dominant emotion representation, we are able to show only the convergence of the

most intense value. Figure 2.5 shows an alternative approach. We chose to represent,

for each individual in our SOM configuration, all the valences that are close to the

dominant valence. This is done by selecting all the valences that are higher than 90%

of the dominant valence. This allowed us to create a new visualisation, where larger

continuous areas represent more intense emotions.

Figure 2.5: The top dominant emotions visualisation, where larger areas of the same color
represent more intense emotions. Colour legend: Anger, Disgust, Fear, Joy, Sadness, Surprise
and white represents No Emotion

2.5.5 Results

During the SemEval 2007 task, the coarse-grained evaluation did not provide good

results. Therefore, we started with two experiments in order to discover any kind

of class dominance. Firstly, only the emotional values were taken into consideration,

but this approach failed to extract any dominant class. Secondly, the neutral class (No

Emotion) was added, leading to an important result, as shown in Table 2.2. The neutral
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class is observed with a strong dominance over the other classes, i.e. 64 % dominant

value. The conclusion of this experiment is that neither of the classifiers presented in

the SemEval 2007 conference managed to break the dominance of the neutral class, and

the classifier we proposed discovers the neutral class better than the others, as seen

later in our experiments.

Emotion Nb. of instances Percent

No emotion 642 64.85%

Anger 14 1.41%

Disgust 6 0.61%

Fear 65 6.57%

Joy 110 11.11%

Sadness 81 8.18%

Surprise 38 3.84%

Combined 34 3.43%

Table 2.2: Dominant class for coarse-grained representation

The second experiment we conducted concerns the whole corpus, with a coarse-

grained representation, like the one described in Section 2.5. All the results are presented

in Table 2.3. The LSA training column represents the LSA decomposition method

applied on the words extracted from the training corpus, whereas the LSA Gutenberg

column presents the results of the k-LSA method applied on the 10 000 words extracted

from the Gutenberg corpus, as described in the Section 2.5.

Emotion
LSA training LSA Gutenberg

Prec. Rec. F1 Prec. Rec. F1

Anger 10.00 11.86 10.85 18.52 15.38 16.80

Disgust 3.33 4.17 3.70 8.33 7.69 8.00

Fear 19.01 17.76 18.36 28.39 27.67 28.03

Joy 36.75 36.75 36.75 40.49 64.62 49.79

Sadness 24.14 40.00 30.11 27.08 19.60 22.74

Surprise 29.73 6.92 11.23 22.50 4.95 8.11

Table 2.3: Results for each emotional class

In order to evaluate our results, we also present the most significant scores obtained

by the systems participating in the SemEval 2007, task 14 competition [187], in Table

2.4. The LSA All emotional system [187], is a meta-LSA method applied on the corpus,

using as support words those existing in the WordNet Affect database and all direct

synonyms, linked by the synset relation. UA [107] uses statistics gathered from three

search engines (MyWay, AlltheWeb and Yahoo) to determine the amount of emotion

in each headline. Emotional score is obtained with the Pointwise Mutual Information
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Emotion
LSA All emotional UA UPAR7

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Anger 6.20 88.33 11.59 12.74 21.60 16.03 16.67 1.66 3.02

Disgust 1.98 94.12 3.88 0.00 0.00 - 0.00 0.00 -

Fear 12.55 86.44 21.92 16.23 26.27 20.06 33.33 2.54 4.72

Joy 18.60 90.00 30.83 40.00 2.22 4.21 54.54 6.66 11.87

Sadness 11.69 87.16 20.62 25.00 0.91 1.76 48.97 22.02 30.38

Surprise 7.62 95.31 14.11 13.70 16.56 14.99 12.12 1.25 2.27

Table 2.4: The systems presented in the SemEval competition

(PMI) algorithm. UPAR7 [35] is a rule-based system with a linguistic approach. The

system uses the Stanford syntactic parser on the titles and identifies information about

the main subject by exploiting the dependency graph obtained by the parser.

The overall results of all presented systems are described in Table 2.5. The global

performance of the system is evaluated by making a strict overlap between the desired

emotion vector and the obtained one, in the coarse-grained context.

Model Precision Recall F1

LSA training 20.50 19.57 20.02

LSA Gutenberg 24.22 23.31 23.76

LSA All emotion 9.77 90.22 17.63

UA 17.94 11.26 13.84

UPAR7 27.60 5.68 9.42

Table 2.5: Overall results

The results are not surprising, because the LSA All emotions offers a good coverage

over the emotional words, but its synonym expansion algorithm introduces a lot of noise

in the method, and therefore offers a very poor precision. UPAR7 leads in some cases

to a better precision, due to its analytical nature, but it lacks in recall. Our system is

a good compromise between precision and recall, as F1 measure shows.

Unfortunately this approach needs a large collection of documents, as Project Guten-

berg, in order to create the support dictionary for the SOM. The linguistic model com-

piled using Project Gutenberg is not very suitable for modern language description,

since the repository contains books written in old English. Moreover, the SOM could

be replaced by more efficient machine learning techniques (i.e. SVM). Given so, we

decided to adopt methods that are more linked with the dialogue problem.

2.6 The dialogue characteristics

In interactive systems dealing with spoken language and more particularly in affective

dialogue systems, the transcribed part of the oral interaction is not as rich as for other
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environments, such as blogs or newspaper articles. In most of the cases, the transcription

provided by a Speech-to-Text or Automatic Speech Recognition engine, offers only the

text information, without any punctuation, emoticons or pause clues. The current

transcribers provide a poor quality for open context dialogue, and the speed is usually

not real-time. Moreover, the detection rate is decreased by presence of homophones,

different accents or even mixed languages. All these issues related to the transcription

technology make the valence/emotion detection problem even more difficult.

Most of the classic systems built for valence extraction [134] use acronyms, emoti-

cons, most common spelling errors and “internet slang”, among other classic linguistic

features. Unfortunately, none of these approaches help when dealing with transcribed

data. Nevertheless, the systems that are dealing with spoken language have to take most

of these errors into account. Otherwise, the system would not take accurate decisions,

therefore multiple modalities have to be considered.

Because of transcription errors, a system dealing only with text data would not have

sufficient information, the text may have missing words or other phonetic artefacts

related to the transcriber. Homophones (i.e. words that sound alike with different

meaning or spelling) are one of the big problems of transcription. Some very common

examples are: bear (to bear something:verb) and bear (animal:noun); accept and except ;

altar and alter or ate and eight. Transcribing the wrong meaning of a word could

severely decrease the precision of a system. To prevent this from happening, some

systems, offer multiple transcription possibilities, ranked by their confidence ratio.

Apart from text, the transcription can be enriched with features from multiple

modalities, such as acoustic features or visual to improve valence/emotion detection

[73]. Multi-modal systems rely on multiple sources of information, considering the

conversational partner and the interaction with him. The usual modalities considered

for this task are voice qualitative features (e.q. pitch, power, volume, pauses), voice

transcription and video features (e.q. gestures, postures, gazing, smiles), as presented

in Calvo et al. [28].

As the smile is usually associated to emotional context [126], we compare several

feature representations for a valence detection model that fusions the presence/absence

of smile as visual feature and the text transcription. Other gestures, such as eye gazing

or head movement, are linked more with activation or power than with valence [73].

2.6.1 Youtube Opinion Corpus

The various feature representations we propose are evaluated on the Youtube Corpus of

Morency et al. [126] which consists in a series of video blog extracts. Each individual

expresses an opinion towards a product, person or event. This chapter focuses on opin-

ions expressed by users in a video blog scenario (monologues). The chosen monologues

consists in transcribed text log, as the result of verbal interaction. Moreover, it con-

tains a series of visual and vocal features corresponding to several gestures and instant

vocalisations. These logs are annotated with the identity of the speaker. Usually, the

transcription does not use the same internet slang nor emoticons as a chat system does.
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In comparison to the previous work done on this corpus, we introduce the idea of a seg-

mented detection for text data rather than predicting a single label for the whole video.

Moreover, we study the importance of several features in the process of multi-modal

fusion, such as NGrams, smile effect or words carrying affective valence.

The corpus chosen for our approaches is the Youtube Opinion Corpus proposed

by Morency et al. [126]. This contains a selection of 48 videos selected from the

Youtube.com website. All these videos have been automatically transcribed and pro-

vided with a couple of annotated features: audio features (extracted with OpenSmile

[60]) and video features (extracted with OKAO, CLMZ, GAVAM or SHORE). More

technical details are available in the corpus documentation [126]. For our approach, we

use only the smile feature extracted with OKAO Software.

OpenSmile

The openSMILE feature extraction tool allows the extraction of real-time large audio

feature spaces. It combines features from Music Information Retrieval and Speech

Processing. SMILE is an acronym for Speech & Music Interpretation by Large-space

Extraction [60]. All these features have been extracted in Weka ARFF format [74],

which allows an easy usage in many statistical machine learning toolkits.

OKAO

The OKAO, which means face in Japanese, features have been extracted with OKAO

Vision Software4 by the authors of the corpus. It provides information about eyes gazing,

head movement and activity, lip motion and smile intensity. Whereas the features linked

with eye and head activity are correlated with energy and arousal, the lip activity and

smile can be associated with valence, as the smile tends to be associated with positive

expressions [126]. Therefore, the smile intensity is one of the most representative face

features extracted with the OKAO toolkit.

Valence Annotation

The annotation is done by three different annotators, and consists in three valence labels

(-1 for negative, 0 for neutral and +1 for positive, presented in the first column of Table

2.6 as well) associated to the data expressed by the user present in the Youtube video.

The annotation was conducted on all the videos, splitting them into multiple segments.

The segments were decided independently by each annotator and the final ones were

decided by voting the overlapping ones. The final label for each segment is decided by

a majority vote. In case of an indecision, a neutral label is chosen.

Table 2.6 provides an example of data from the Youtube corpus. Each line from

the table corresponds to an annotation segment. The transcription may have overlaps

with the previous or next segments, because the transcription was contained in multiple

annotation segments.

4http://www.omron.com/r_d/coretech/vision/okao.html
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Annotation Smile Transcription

-1 Yes i can not stand it

-1 Yes i can not stand it people are f*** retarded

0 Yes people are f*** retarded like i was handing this lady her soda
is one was a doctor pepper or something one was a sprite

0 No one was a doctor pepper or something one was a sprite she
looks at me she looks at the sodas and was like which one is
the sprite

-1 No which one is the sprite lady okay if you are colorblind that is
cool but are you retar like are you serious quit playin

-1 Yes are you retar like are you serious quit playin are you that
stupid whatever

-1 Yes are you that stupid whatever i am like i jus i have to deal w
like i mean i am a people person i love people i you know i
love talking with people it is just

Table 2.6: An example of transcription and smile presence from Youtube Database, video 7.
The transcriptions and smiles are provided per segment basis. The bad words are censored with
*

Starting from this corpus, we present our methodology which is used to generate

our features for the fusion model.

2.7 Multi-modal Affect Detection

Our methodology uses two modalities to detect human emotions: speech and gestures.

In order to apply semantic analysis techniques, the speech is transcribed into text. For

the gesture modality, we chose to evaluate the smile since it is usually associated with

affective feedback. Other gestures, such as eye gazing or head movement, are linked

more with activation or power than with valence [73].

Another very important aspect of any emotion detection system during dialogue

interaction is represented by the functional segment, from which the roles are modelled.

These segments can be a series of frames, when they are used to predict affects based

on video or acoustic features. For text applications, the segments could be the words,

the utterances or other functional structures. In a more general case, the frames can be

grouped into a series of functional segments, based on their role on the video.

In figure 2.6, the rounded orange boxes represent the gesture segments, the blue

squared box represent the transcription and the dark arrows labelled as s∗ represent the

annotation segments. For the previous example, the non-strict transcription overlapping

means that the first blue text segment (the lower box), is considered in all the si, si+1

and si+2 segments. On the visual level, gestures are characterised usually by type,

intensity and duration. This kind of information can be described by the annotation

segments. Whereas the type of the gesture remains the same all over the segment, the
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intensity and duration is adjusted by the length of a certain annotation segment. In

figure 2.6, the first gesture (first orange rounded box) would be split into three different

segments, all having different durations and intensities for segments (si−1, si and si+1).

Text

Gesture

si si+1 si+2 si+3 si+4...

Figure 2.6: A multi-modal representation of the text and gesture interaction, with a segmented
annotation. The segments si are chosen by the annotator based on their function, directly on
the video sequence, without strictly overlapping the gesture or text track

Usually, the segments are chosen by the annotators based on their semantic function

and could overlap the transcription or gesture segments. For the strict overlap, in

general this is not the case, as the annotation could be done directly on the video

data, without taking into account the transcription or gesture segments. Usually, the

transcription and annotation segments do not strictly overlap and the transcription

could not be segmented very accurately when the annotation segments do not include

it. In this scenario, since the semantic relations between words are very important, we

therefore decided that the transcribed segments are taken as a whole for each annotation

segment, even if the transcription time frame is passing the annotation bounds.

All these presented concepts need to be formalised and encoded into numerical

features. Afterwards, they are provided to a classifier, which, in combination with our

features, constitutes our classification model.

2.7.1 Classification Model

Similarly to the SOM model presented before, our technique requires a multi-step pro-

cess. The first step, also called preprocessing, consists in the filtering and cleaning the

text information. The feature extraction and a projection follows, by using simple word

presence strategies. In the third step, the SVM optimisation is applied and the trained

model is used in the classification step.

We present first the SVM classification algorithm and we continue with the descrip-

tion of the training and testing sets. We follow with the feature extraction process and

a brief description of the results.

2.7.2 SVM Classifier

The classifier we have chosen is a commonly used supervised method, the Support Vector

Machine (SVM). We use the implementation provided by the Weka toolkit [74], which

offers a set of classification kernels, such as linear, polynomial or RBF. We also used

the SMO [100] implementation for the SVM optimisation. SMO offers the possibility

to configure multiple kernels and we have chosen the linear kernel, using the balance

criteria between the training speed and accuracy of the results.
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In the case of an SVM, we define the data samples as X = {xk|xk ∈ Rn}, and the

classes (labels) as Y = {yk|yk ∈ {−1,+1}}. The solution for the SVM problem is a

function, f(x), ∀x ∈ Rn, that separates the space (X ) into two hyperplanes. Ideally, all

the samples labelled with +1 are contained in one hyperplane and the samples labelled

with −1 are in the other.

The mathematical definition of the function, for the linear case, is given by the

following equation:

f(x) = 〈w, x〉+ b = xTw + b (2.10)

where the 〈a, b〉 represents the dot product of a and b.

Furthermore, finding this equation is a problem of “Quadratic Programming Opti-

misation” of a linear function under constraints. This could be solved in several ways,

starting from the mathematical form of the problem:

min
w,b

N∑

i=1

[1− yi (〈w, xi〉+ b)
︸ ︷︷ ︸

f(xi)

]+ + λ‖w‖2 (2.11)

where N is the number of samples used to train the kernel, λ is a penalty coefficient

used to prevent the function overfitting, and ‖ • ‖ is the Euclidean Norm.

For the context of this experiment, we use the SMO [100] algorithm for the SVM op-

timisation, which implements John C. Platt’s sequential minimal optimization strategy

[153], provided by Weka Toolkit.

Another aspect of the SVM problem is represented by the “margin”. It is the in-

tersection of two hyperplanes, define by the following equations: 〈w, x〉 + b = −1 and

〈w, x〉 + b = +1. Figure 2.7 shows an SVM representation by using a margin. Its

role is to find the best function that produces a linear separation of the plane, while

minimizing the margin:

min
w,b

2

‖w‖
(2.12)

To obtain the class after the function is computed, the sign of the function needs to

be evaluated: if f(x) < 0 then the sample (x) is in the -1 class, and in the +1 otherwise.

2.7.3 Training and testing sets

Since the corpus does not provide a training and testing set, we separate it, based on

the user-independence strategy. Therefore, the split has to be done in a way that a

subject in the training is excluded from the testing.

The strategy we propose is a 47-fold evaluation, where the training is done on 46

videos and the testing on 1. This method has been proven to be useful to discover

outlier users (users that do not fit the training data). Morency et al. [126] used a

similar method to test their approach, the only difference was that they used 48 folds,

because they did not eliminate the video number 20 from the dataset. For the purpose
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Figure 2.7: The SVM hyperplane separation using a linear kernel and margin equations

of our experiment, this video was removed from the original corpus since it does not

contain any OKAO annotation, and therefore no smile level could be extracted.

Since SVM is a binary classifier, we split the classification method into two different

approaches: a neutral vs non-neutral classification (positive vs negative classifier) and

a positive vs non-positive (neutral vs negative). The separations are done as a two level

classification, we apply the first level of classification and for the combined class, we

apply a second level to discriminate once more. In the case of neutral vs non-neutral,

this means that at first we discriminate the two classes with an SVM kernel, and next,

in the case of the non-neutral class, we apply a second classifier to discriminate the

positive against the negative class.

The choice of a two level SVM has been made because we want a more detailed

analysis on the feature fusion mechanism.

2.7.4 Feature extraction

Preprocessing Step

During the preprocessing step, on each transcription segment of each video, a collection

of filters is applied, in order to remove any useless information, such as meta-information

for pauses, which is specific to every transcriber. The short word structures are ex-

panded to their full representation, such as don’ (don’t) which is expanded to do not.

Concerning the final feature extraction algorithm, any partial transcribed words are

filtered, such as stu- stupid, in which case we filter the word stu-.

In order to increase the precision of our system, we apply a Part Of Speech Tagging

(POS). The dictionaries we use offer valence only for nouns, verbs and adjectives. More-

over, some very frequent English words may have the role of prepositions (i.e. like).

The POS tagger used is the one of SENNA [39], which offers both good precision and

speed.
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Feature Extraction

In order to proceed to our SVM classification, we extracted a set of feature vectors.

NGrams are one of the few basic word features used in text understanding. Given

a window of length n = 1, 2, 3..., we consider all the word combinations in the given

window. These groups are unordered. All the NGrams are first extracted from the

training corpus and a dictionary (DNGram) is compiled, with all the possibilities found

in the corpus.

Based on the dictionary already compiled, a second pass is done, and a NGram word

presence vector is computed. This means that ∀wi ∈ D
NGram, the i of the vector is 1,

if the word from the DNGram is contained into the sentence, as shown in the equation

2.13.

∀wi ∈ D
NGram, vNGram(wi) =

{

1 wi ∈ sentence

0 wi /∈ sentence
(2.13)

1Gram is a specific type of NGrams, for the case where n = 1. In this scenario, the

dictionaries D1 are generated as well as the associated feature vectors.

Smile feature has been extracted using the given OKAO video features. OKAO pro-

vides for each frame of a video an intensity for the smile level, which has to be filtered

because of the noise. The smoothing is done with a window average filter, which takes

a window of 50 frames and calculates an average for the current frame. Secondly, a

threshold has been applied to detect the peeks into the continuous signal, as it can be

seen in figure 2.8. These peeks correspond to clear smile segments.

As the smile is user dependent, detecting it with a high precision is very difficult.

Therefore, we applied three different thresholds to segment the smile. Based on the

selected thresholds, the 40% intensity is a very optimistic estimation of smile presence

and the 60% is very pessimistic and detects only the clear smiles. The 50% level offers

a good balance between the previous two thresholds, but it does not cover all the

individual smile types.

The smile feature is computed as a single presence, very similar to the NGram

vectors. The dictionary for the smile vector consists in the three smile-based features,

segmented by the thresholds presented.

AVW (the Average of Valence given by Words) feature has been computed

as an average of the positive and negative percent, given by all the words contained in

the selected segment. The valences are given by SentiWordNet [11]. This features was

designed to let the SVM take the final choice from the two valences computed on the

word level. In future, this feature could be replaced by a contextualised word valence,

presented in Chapter 3.

1Grams + 2Grams Given the efficiency of the 1Grams, we merged the two features

together as a simple vector merge and feed the resulting vector to the SVM. The 2Grams
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Figure 2.8: The continuous smile function along with three different thresholds: 40%, 50%
and 60% according to most common smile levels in the corpus. The signal has been already
smoothed with an average windowed filter. The blue circles represent the intersection point
between the signal and the threshold line.

are similar to 1Grams and have the D2 dictionary associated.

1Gram + Smile This is a feature merge between the 1Gram and Smile feature vector.

It has been chosen based on the good results obtained for each feature independently.

1Gram + S-W The Smile-Word (S-W) co-occurrence is a feature built to detect

segments where the words (1Grams) are influenced by the smile presence. The dictio-

nary for the feature vector is built in a similar way to the NGrams, the only restriction is

that the smile and the vectors should occur on the same segment. If a smile is present

into a segment, it is considered that it influences all the functional words present in

that segment. This is different from the 1Gram and Smile feature merge because of the

co-occurrence strategy considered.

1Gram + S-All This is a feature merge between 1Gram, Smile and Smile-Word. It

has the role to combine all the features that consider smile along with the semantic

features corresponding to 1Grams.

1Gram + AVW feature merge is a feature merge between the 1Gram and AVW

feature vector.

2.7.5 Results

The results are presented for the two separations we considered. Our classifiers are built

for a two level decision: First Level is a Neutral vs Non-Neutral discrimination, and in
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the case of a Non-Neutral level, a Second Level classifier is done to discriminate positive

vs negative. These results are presented in the Table 2.7. The levels considered for a

second separations are similar to the first ones: Positive vs Non-Positive and Neutral

vs Negative. These results are presented in Table 2.8.

First Level Second Level

Neutral vs Non-Neutral (+/-) Positive (+) vs Negative (-)

Model Prec. Recall F1 Prec. Recall F1

1Gram 0.6449 0.5946 0.6187 0.7147 0.5176 0.6004

Smile 0.5759 0.6813 0.6242 0.4909 0.5502 0.5189

AVW 0.5544 0.7061 0.6211 0.4075 0.5006 0.4493

1Gram + 2Gram 0.6080 0.6421 0.6246 0.7095 0.5275 0.6051

1Gram + Smile 0.6734 0.5853 0.6263 0.7285 0.5384 0.6192

1Gram + S-W 0.6272 0.5750 0.6000 0.7085 0.5027 0.5881

1Gram + S-All 0.6452 0.5849 0.6136 0.6926 0.4902 0.5741

1Gram + AVW 0.6370 0.5845 0.6096 0.7194 0.5536 0.6257

Table 2.7: Results for the neutral vs non-neutral separation for the first level of classification
and positive vs negative for the second level

In case of the first experiment (Table 2.7), the best features for the first level are

1Gram+2Grams and 1Gram-Smile. Out of these two, 1Gram+2Grams has a better

recall, while 1Gram-Smile is more precise. On the positive vs negative discrimination,

the 1Gram+Smile and 1Gram+AVW seems to offer the best results, both of them

having good precision, as well.

First Level Second Level

Positive vs Non-Positive (0/-) Neutral (0) vs Negative (-)

Model Prec. Recall F1 Prec. Recall F1

1Gram 0.6055 0.6192 0.6123 0.6307 0.5353 0.5791

Smile 0.5591 0.6846 0.6155 0.4857 0.5090 0.4971

AVW 0.5421 0.6945 0.6089 0.4168 0.5125 0.4597

1Gram + 2Gram 0.6125 0.6712 0.6405 0.5990 0.5275 0.5609

1Gram + Smile 0.6198 0.6213 0.6206 0.7146 0.5575 0.6264

1Gram + S-W 0.6295 0.6289 0.6292 0.6428 0.5201 0.5750

1Gram + S-All 0.6485 0.6369 0.6427 0.7184 0.5516 0.6240

1Gram + AVW 0.6146 0.6160 0.6153 0.6489 0.5279 0.5822

Table 2.8: Results for the positive vs non-positive separation for the first level of classification
and neutral vs negative for the second level

Table 2.8 presents the results for the second separation considered. For the first
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level, 1Gram+2Gram and 1Gram+S-All offers the best results. For the second level,

1Gram+Smile and 1Gram+S-All give the best results.

Out of these two experiments, it seems more easy to discriminate positive informa-

tion by using a smile, on the first level. Moreover, the smile used as a feature seems to

be very useful to discriminate affective information.

The AVW feature, which is used in most of the dictionary based approaches, seems

to work well in combination with 1Gram features, to discriminate between positive and

negative. Nevertheless, this approach computes first the valence as a feature, which is

used by the SVM to discriminate the valence classes.

On the original Youtube dataset, Morency et al. [126] used a simple affective word

presence feature (Text only), smile and eye gazing time (Visual only), pitch and power

(Audio Only). For the classification, they used a three class HMM-based classifier and

for the fusion, a simple feature merge was used. The best result is obtained for the

fusion. All the results obtained by Morency et al. [126] are presented in Table 2.9. In

comparison with these results, we managed to obtain better ones by using only text

and visual modalities.

Modality Precision Recall F1

Text only HMM 0.431 0.430 0.430

Visual only HMM 0.449 0.430 0.439

Audio only HMM 0.408 0.429 0.419

Tri-modal HMM 0.543 0.564 0.553

Table 2.9: Detection results for a three class HMM-based classifier, as extracted from Morency
et al. [126]

2.8 Discussion

For our first experiment, on the SemEval 2007 corpus [187], the results prove our initial

goal: to design an algorithm that is fast and would provide a good equilibrium between

precision and recall on text data. The choice of a strategy, from the ones presented on

the SemEval 2007 competition, for an emotion detection task is a matter of performance

required by the application: in an offline environment5, having a semi-supervised filter-

ing task, the LSA All emotion and UPAR7 would probably offer good results, but in

an online processing task, our strategy performs better, while offering a good balance

of precision and recall.

Even if this approach needs a large collection of documents, as Project Gutenberg,

in order to create the support dictionary for the SOM, it could be used in a combination

with other dictionaries for more formal writing styles (i.e. blogs, twitter).

The second experiment is designed in a multi-modal context, by taking into account

5In the concluding remarks of the Strapparava et al. [187] paper it is said that several strategies,
including UPAR7, perform very poor in terms of speed
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semantic information and smile. The smile feature can be used to boost the results,

for both of the classification problems neutral vs non-neutral and positive vs negative.

Whereas this feature is believed to be linked with strong affective content, it can be

used to discriminate the positive data as well.

The AVW, one of the most widely used text feature in Affective Computing, does not

seem to discriminate well the valences, even in the neutral vs non-neutral separation.

The interesting fact observed on this feature is that a combination of positive and

negative words, as extracted from a dictionary, does not necessarily produce a negative

or a positive phrase, only by counting the valence. This would suggest more complex

approaches, such as AFFIMO, proposed by Ochs et al. [134], or by using contextualised

affective dictionaries, as we propose in the next chapter.

The classifiers used for the two experiments are different and adapted for the task.

The SemEval 2007 corpus provides a continuous annotation for each emotional label,

whereas the Youtube Corpus uses discrete valence labels. For the first task, the SOM is

used to overcome the fuzziness of the annotation process. Based on the results obtained,

this strategy proves to be efficient. The SVM, which is a Supervised Machine Learning

technique, uses the annotation to learn the classifier. Moreover, it suits well discrete

predictions that are made on a window level.

In the current approaches, we used WordNet Affect, which attaches to each word the

most common emotional label and SentiWordNet, which has many conflictual valences

for the same word. One of the solutions for this problem is to attach to each word a

context and for each context an affective label. By using this, the number of semantic

conflicts will decrease. Our next proposition deals with this problem by automatically

generating an affective context graph.
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CHAPTER 3

Affective linguistic resources for emotion detection

"Human behaviour flows from three main

sources: desire, emotion, and knowledge."

– Plato
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3.1. CONTEXT

3.1 Context

In the field of sentiment analysis and emotion detection based on text data, two main

research directions exist: 1) building large and reliable linguistic resources, such as

dictionaries or ontologies and 2) designing classifiers for valence, sentiment or emotion

detection [28]. However, since affective classifiers usually rely on linguistic resources,

these dictionaries have to be large and accurate.

Unfortunately, even if recent approaches have increased the size of the dictionaries,

the ambiguity of the decision increased as well [156]. Our goal in this chapter is to

improve these dictionaries by preserving, as much as possible, the annotation accuracy.

This objective is performed by taking into account the context of the word, and a new

linguistic approach to model this relation, called the contextonym model. This process

is done through multiple phases: a large collection of documents is selected (in this case

a subtitles corpus), afterwards a clique exploration algorithm is considered to generate

the contextonym model. Over this model, the SentiWordNet (SWN) [11] valences are

mapped and in certain cases disambiguated. The innovative characters of this approach

consist in using subtitles to model a dialogue context, the clique exploration algorithm

proposed and the automatic valence disambiguation using a context-graph.

The corpus considered for this experiment consists in a snapshot of a subtitle da-

tabase, obtained from http://www.opensubtitles.org/ and http://www.podnapisi.

net/. This database has been chosen because the documents are available in large

quantities, multiple languages, their quality can be assessed using simple measures and

they are free of charge. Moreover, the information is expressed in an oral style, with a

structure similar to dialogue.

This chapter also addresses the problem of finding maximal cliques in large dynamic

graphs with an algorithm based on an original graph-to-tree transformation. When deal-

ing with large and dynamic data, one of the solutions is to design distributed algorithms

in order to reduce the computational time. In the context of distributing data over a

network of processors, the optimal solution is the one that does not require all the

data to be transported on all the machines on the network, but just a sub-image of the

original data. We call this problem Graph Dimensionality Reduction. We, therefore,

propose an efficient MCE algorithm called DDMCE (Dynamic Distributable Maximal

Clique Exploration) that finds all the maximal cliques in a large dynamic graph, even

when the original graph structure is modified while the algorithm is processing the re-

maining nodes. DDMCE is based on a graph to tree transformation, allowing to reduce

the computation time, to deal with dynamic changes over a distributed architecture.

As the size of the data cannot be reduced, no theoretical dimensional limit is imposed

to the algorithm.

In this chapter, we present a brief state of art concerning different approaches used

for emotion detection based on dictionary approaches and Maximal Clique Exploration.

The DDMCE Algorithm is introduced afterwards with several experiments to validate

the approach. We continue with the presentation of an automatic generated contextu-

alised affective dictionary and we conclude with a brief discussion.
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3.2 Related work

3.2.1 Affective Dictionaries

Very often, building a classifier, relies on having large and accurate linguistic resources.

Improving these dictionaries, by preserving their size and increasing the annotation

accuracy, is therefore considered mandatory.

Among the existing linguistic resources, WordNet (WN) [62], or variations over it,

remains the most popular one [28]. WN, built at Princeton University, is used in most

of the Natural Language Processing applications. The concepts in WN are grouped

into synonym sets (also called synsets), which are sets of words semantically linked.

Each synset description contains its frequency in the dictionary and a glossary which is

basically a short sentence describing the synset. Among the basic synonymic relations,

WN also contains some special relations such as hyponymy, hyperonymy or ISA (“is

a”). All these links describe generalisation, specialisation or equivalence relationships

between synsets.

As a synset database example, WordNet Affect (WNA) [188] is an extension of WN.

WNA contains synsets annotated with emotional labels (i.e. Ekman’s basic annotation

scheme [59]: Anger, Disgust, Fear, Happiness, Sadness and Surprise). WNA contains

nouns, adjectives, adverbs and some verbs for the English WN 2.0 version. ConceptNet

[113] is another well-known ontology widely used for semantic disambiguation in classifi-

cation tasks. This database contains assertions of common-sense knowledge encompass-

ing the spatial, physical, social, temporal, and psychological aspects of everyday life.

ConceptNet was generated automatically from the Open Mind Common Sense Project

[180]. Finally, SentiWordNet (SWN) [11] is dedicated to opinion and valence classifica-

tion. Valence is represented by the degree of positivity, negativity or objectivity of a

certain word or sentence, whereas opinion represents the general valence over a series of

sentences. SWN is the result of a semantic propagation algorithm over all WN synsets

according to their valence.

All these linguistic resources are used, among other applications, to design affective

classifiers. For instance, starting from WNA, Valitutti et al. [198] proposed a simple

word presence method in order to detect emotions, where the emotion of a sentence is

given by the dominant affective word. SemEval 2007 (task 14) [187] presented a corpus

and some methods to evaluate it, based on WNA as dictionary [187]. In particular,

methods based on a fusion of algorithms, using Keyword Spotting, Lexical Affinity

or Statistical Natural Language Processing are very popular [134]. All of them use

certain affective dictionaries to train their methods: 1) WNA [188]: EmoText [139],

EMMA (Emotion Metaphor and Affect) [209], EmoHeart [131]; 2) Mind Common Sense

[180]: EmpatyBuddy [114]; 3) SWN [11]: AFFIMO [134]; 4) Hand crafted rules and

dictionaries: Emologus [3], Sentistrength [192].

All the linguistic resources used in these methods are either accurate small scale

dictionaries or large ones with a high number of conflicts. These are defined as valence

inconsistencies or ambiguities which appear for words contained in the same linguistic
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resource. More details about this will be given in the following sections.

The larger the support dictionary is, the higher recall the corresponding system

obtains. On the contrary, the less conflicts the linguistic resource contains, the higher

the precision of the classifier is. Increasing both the size and annotation accuracy

of linguistic resources is therefore considered necessary. Unfortunately, even if recent

approaches have increased the size of the dictionaries, the accuracy of these methods

still decreases [156].

Our goal is to improve these dictionaries by preserving, as much as possible, the

annotation accuracy. This could be done by introducing context into existing large

dictionaries, such as the SWN, which would decrease the number of conflicts. This ob-

jective is performed by taking into account the context of the word, and a new linguistic

approach to model this relation, called the contextonym model. The contextonyms are

modelled as maximal cliques in a word co-occurrence graph.

The algorithm used to build the contextonyms graphs needs to be able to explore

large and dynamic data. Moreover, due to a high computation time, this process needs

to be done in a parallel or distributed way.

3.2.2 Maximal Clique Exploration

A clique is a complete sub-graph, i.e. a sub-graph such that every two nodes are

connected. A clique C is maximal if no larger clique contains C. Semantically, a clique

contains all the elements that are somehow strongly related, based on a specific function,

such as contextonyms.

A graph can contain multiple cliques and the number of cliques cannot be approx-

imated by any simple mathematical formula. Usually, it depends on the number of

nodes and the density of the graph. Clique discovery algorithms can be classified in

three different categories: Clique Counting (CC), Largest Maximal Clique Exploration

(LMCE) and Maximal Clique Exploration (MCE). CC algorithms return only the exact

number of cliques detected, rather than a list of them, which limits dramatically their

domains of application. LMCE, addressed early in 1996 during the DIMACS Second

Challenge proposed by [96], is concerned with discovering only the largest clique, rather

than exploring all the candidates, as for MCE.

Clique discovery in large graphs is a scientific issue that started in the early days

([115]) of the modern computer science. It is shared by various fields such as computer

vision (i.e. feature matching [20], scene labelling [36, 76, 125, 164], stereo matching

[120, 130, 34, 80]), information retrieval (i.e. document alignment, similarity measure

[23, 61, 25], document indexing [119, 69]), computer network task planning [50], protein

segmentation in biochemistry problems [169, 104, 146, 95], construction of linguistic

resources for machine translation or dialogue analysis (i.e. extraction of context cliques

called “contextonyms” on large graph-based linguistic models [88, 121]) and more gen-

erally in all the problems where efficient clique searching algorithms are needed.

More recently, MCE algorithms have been applied to modern social network analysis

[85, 124], where the clique could represent a close group of friends of an individual. The
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techniques used in this area are often similar to the bio-chemistry related algorithms, and

usually only the interpretation of the cliques differs. This kind of application raises new

challenges since the data to analyse are dynamic: whereas for classic applications the

graph is static in most of the cases, the structure of social networks mutates with a high

frequency. Classic MCE algorithms need therefore to be adapted in order to compute a

clique discovery not from scratch, but from a previously computed exploration, which

can also be partially up-to-date.

In all these applications, MCE algorithms are considered as extremely challenging,

because of their NP-hard status [99]. Exploring all the candidates in a graph ensure

to discover the optimal set of maximal cliques, but is time consuming because no early

prediction of “false paths” can be made. For certain problems, when a complete list

of all the existing cliques is not needed, heuristic approaches sacrifice optimality and

completeness to gain computational time. Furthermore, since a dynamic graph changes

its structure, the time needed to take into account such a change is important. Nev-

ertheless, choosing an optimal approach or a heuristic one is problem dependent. The

application domain also influences the dynamicity of a graph and computational time

required to process it.

Nowadays, proposing an efficient distributed approach for the MCE of large and

dynamic data is still an open problem. Many research teams have proposed different

strategies to reduce both the exploration space and the computational time, as detailed

in Cazal’s survey [32].

In the following of this section, we present the two main directions for the MCE:

the exploratory algorithms for a complete exploration of a given graph space and the

heuristic strategies allowing to partially explore this graph space. We also present the

most significant implementations of MCE algorithms. The current method focuses on

the exploratory approaches, since we consider important the optimality and complete-

ness ensured by these algorithms. Nevertheless, considering large and dynamic data,

optimizing the computation time, related mostly with the heuristic approaches, remains

also one of the priorities of our research work.

Exploratory Clique Algorithms

The term “MCE ” is used only in the context of full exploration. The main advantage

of these algorithms is that completeness and correctiveness can be proved [24, 5, 103,

196, 32]. Bron & Kerbosch proposed in early 1973s one of the first MCE algorithms

based on a depth-first approach to explore all the maximal cliques in a graph. Most

of the algorithms used for MCE are descendants of this depth-first approach. Cazals

et al. [32] separate MCE algorithms into two distinct classes: the “greedy” ones, as

extensions of the algorithm proposed by Bron & Kerbosch [24] and Akkoyunlu [5]; and

the output-sensitive ones, such as those proposed by Tsukiyama et al. [197] or [117].

The specificity of the exploratory algorithms is that, although the data representation

differs from regular sets or matrices, all of them build a logic exploration tree, which is

not represented in memory. This exploration logical tree has the same role as a function
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call tree.

Bron & Kerbosch [24] provided a depth-first exploration algorithm (detailed in the

next section as the Algorithm 3.3.1), which is still one of the most used algorithm for

greedy search. The proposed exploration takes into account only the best option at

each step, and does not apply any backtrack exploration. A variant of this algorithm

published by Akkoyunlu [5] uses a similar logic exploration tree. Koch [103] published

an improved version of the algorithm and introduce a pivot selection step, which consists

in choosing a node that potentially reduces the exploration space. The idea of using a

pivot selection strategy to improve the exploration was therefore often taken up; Cazals

& Karande [32] studies the most recent strategies, and they concludes that the Tomita

et al. [196]’s strategy is the most efficient one, for different exploratory algorithms.

After the publication of this strategy, most of the MCE research has been focusing

on implementing the method on different languages and software environments, rather

than improving the algorithm itself. We will describe this algorithm in the next section.

The problem of clique exploration on dynamic data, has been firstly addressed by

Stix [185], where the dynamical character of the graph is simulated by adding new

edges. The method proposes several decompositions of the original graph into smaller

structures, in order to reduce the algorithmic complexity and to scale better the addition

of a new edge.

Exploring all the solutions in a graph is time consuming, mainly because no early

prediction of false paths is possible. Heuristic approaches propose to improve the com-

putational time by sacrificing the precision. These strategies could be applied for both

large or dynamic data.

Heuristic Maximal Clique Algorithms

The Heuristic-based Maximal Clique (HMC) algorithms are usually not defined as ex-

ploration problems. A good review on the HMC problem can be found in Bonze et

al. [21]. Among all the research directions for heuristic algorithms, three main classes

can be distinguished: evolutionary approaches, dynamic local search and ant colony

optimizations. Whereas the genetic algorithms propose a solution where an initial pop-

ulation is evolved to an optimum, the local dynamic search is an iterative approach,

combining different strategies. The Ant Colony optimisation approach uses “pheromone

trails” to reinforce certain paths in the graph, in order to build the cliques.

Following the observations made in [4], Balas et al. [12] propose a revised optimized

crossover operator for an evolutionary approach, with standard genetic algorithm oper-

ators (selection and mutation) and maximal cliques represented as individuals.

Pullman & Hoos [160] presents a dynamic local search for the HMC approach, which

combines two different strategies for building the cliques: a global iterative approach

which has the role of adding new unexplored nodes to the clique, and a plateau search

strategy which replaces nodes from the current studied clique with unexplored nodes.

This algorithm seems to offer substantial computational time improvements over state

of the art local search heuristic, as presented by Grosso et. al. survey [70].
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Another popular heuristic approach is Ant Colony Optimization (ACO) [184, 71].

Solnon et al. propose a simple and efficient ACO algorithm, which generates cliques

by successively adding new nodes into the clique set and uses “pheromone trails” as a

greedy heuristic to choose the best node. The study also compares the two possibilities

for laying the “pheromones”: on the edge or at the node level.

The HMC algorithms obtain good results in all the application fields where reducing

computational time is essential, rather than ensuring to collect the optimal complete

solution. In practice, the choice of an HMC algorithm over an exact approach remains

strictly linked to the application. More recently, with the development of Message

Processing Interfaces, the implementations migrated from finding heuristics for the ex-

ploration problem to finding methods to process the data in a distributed way.

Distributed Systems

In the category of commercial implementations, the Google Pregel System [118] should

be reminded, since it handles very large graph structures. The system has been built on

the idea that every nodes of a graph could be activated or deactivated at any time.

While active, a node can produce processing or activation messages. Malewicz et

al. [118] present their architecture and the main capabilities of the platform, which

includes: message passing, topology mutations and fault tolerance in large and dy-

namic graph structures. From the application perspective, some implementations are

presented: Shortest path, Bipartite Matching (finding bipartite graph structures) and

Semi-Clustering (an approach to find graph structures with strong links between nodes,

while eliminating the soft ones). Even if the platform does not directly cover clique

discovery, it remains one of the largest graph processing platforms. Unfortunately, the

platform needs the whole data to be present on all the processing nodes at any time.

In order to handle large graphs, an alternative to Google Pregel is to use distributed

computing. For instance, Jennings & Motyčková [93], in the context of protein struc-

ture detection, distribute their algorithm through multiple threads on the same machine.

The problem is really tackled with the emergence of Message Passing Interfaces (MPI)

[181] implemented on big processing clusters [91, 145]. MPI is a formalisation of an

message exchange protocol, that has been implemented on many hardware architec-

tures and programming languages. Almost all the big processing clusters implement

the MPI standard. In the MCE fields, Pardalos et al. [145] proposed a distributed

implementation of the Carraghan-Pardalos Algorithm [29] with the Message Passing

Interface (MPI) standard. Schmidt et al. [174] also use a MPI to distribute the re-

sources among various computers. This algorithm uses a modified version of Koch’s

MCE, in order to obtain scalability for local (multi-processor and multi-thread) and

distributed computation. Schmidt et al. [174] also provided experimental results over

graph representation, drawing the conclusion that the adjacency bit matrix represen-

tation is the best, in comparison with the linked list or hash map representation. We

use this result to represent our graph as bit matrix, when the size of the graph allows

it. For large graphs, we prefer a sparse, hash map representation. Nevertheless, their
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idea did not tackle the issue of dynamic graphs and data reduction, whereas in some

situations the full image of a graph is not needed.

The distributed systems solving the MCE problem have a major importance in the

current approaches. The usage of MPI makes possible to process data in a parallel

or distributed way. Moreover, by combining these approaches with several heuristics,

these systems are able to process larger graphs. Unfortunately, the dynamic issue of

the data is not covered by any algorithm and the data reduction hypothesis remains a

perspective in the Malewicz et al. [118] article.

Analysis of the Maximal Clique Exploration Algorithms

The choice of an algorithm that deals with large and dynamic data depends on the

application. Whereas a static algorithm for clique detection suits well bio-chemestry

problems [104], the dynamic approaches are needed for relation detection on social

networks for instance, since the structure of a social network can change dramatically

[85, 124]. Semantic data graphs [121] are certainly less dynamic, but nevertheless can

also benefit from this class of dynamic algorithms.

For small-sized data structures, the existing approaches based on the algorithm

proposed by Bron & Kerbosch [24], with the Tomita et al. [196] pivot selection strategy,

work well. The authors have not proved that this algorithm can process large data.

Moreover, Schmidt et al. [174] show that this algorithm needs to be combined with

heuristics in order to be able to process large data structures.

Heuristic algorithms offer an interesting solution to tackle well large graph struc-

tures, especially from the processing time perspective. Unfortunately, they do not

guarantee the full exploration of the solution space nor the quality of the generated

solutions. Thus, heuristic algorithms cannot be used in those research fields where this

is a strict condition, for instance when processing linguistic resources.

On the dynamic side of the problem, the work of Stix [185] addresses this problem

from a theoretical perspective, without proposing a solution that scale well large data.

As a solution to MCE in large and dynamic graphs, Pardalos et al. [145] and

Schmidt et al. [174] propose to distribute the algorithm using an MPI architecture,

which decreased the global processing time. Their work does not optimise the memory

consumption of the solution representation, nor consider the dynamic character of the

data. Malewicz et al. [118] state that graph processing algorithms should be designed

in a distributed way, rather than having a single processor. This idea is the foundation

of the Google Pregel architecture. Based on this observation, a modern MCE should

be parallel and “distributable”, to process large data in short time.

Since graphs are a popular representation for instance in bio-chemistry or in se-

mantic data modelling, MCE offers a solution to node clustering and for semantic link

exploration. Various research groups tackle the problem using static serial MCE algo-

rithms, whereas others distribute the problem. On recent data structures, large and

very dynamic, the state of art approaches seem not to explore well these graphs. A

new approach combining all these paradigms needs therefore to be found. In particular,
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parallel algorithm seems to be a good solution since high processing time is required for

this type of data. So far, none of existing work propose a MCE algorithm that can pro-

cess large and dynamic data in a parallel way. Furthermore, the memory consumption

of the algorithm can be reduced by keeping only the data needed to process a certain

exploration case.

We, therefore, propose an algorithm that satisfies all the requirements to process

dynamic and large graphs. Moreover, it is a good candidate to process our subtitle

corpus data and can be used to generate the contextonyms graph.

3.3 DDMCE Algorithm

3.3.1 Preliminaries

Notations

Some classic notations of graph theory are used hereafter, as described bellow.

• | S | represents the cardinality of the finite set S.

• A graph is described by G = (V (G), E(G)), or G = (V,E) in the short form,

where V (G) is the set of vertices/nodes of the graph G and E(G) is the set of

edges. Usually, n =| V (G) |.

• For a given u ∈ V (G), N(u) denotes the set of all the neighbours of u:

N(u) = {v | (u, v) ∈ E(G)}.

• Q denotes the clique set, and q an element of Q.

• A clique is maximal, iff equation 3.1 is satisfied:

∀q ∈ Q, ∄q′ ∈ Q, q ⊂ q′∧ | q |<| q′ | (3.1)

• A tree T = (V (T ), E(T )), is considered to be an ordered directed graph, with a

root R.

• All the trees have an ordered child list Ch(p), for a given parent p.

• Let SL(u) = {v ∈ Ch(p) | u ∈ Ch(p) ∧ index(v) < index(u)} be all the siblings

that are in the left part of u, and let SR(u) = {v ∈ Ch(p) | u ∈ Ch(p)∧index(v) >

index(u)} be all the siblings that are in the right part.

• Let sTu be the sub-tree associated with the root u, and sGU as the sub-graph

associated to the vertex (node) set U.

The Bron & Kerbosch Algorithm

The DDMCE architecture we propose is based on the Bron & Kerbosch [24] algorithm

with pivot selection. Bellow, we present the version of the Bron & Kerbosch algorithm

(Algorithm 3.3.1) described by [32].
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The initial call of the Algorithm 3.3.1 is done with: explore(∅, V, ∅).

Algorithm 3.3.1 Bron-Kerbosch Algorithm with pivot selection

Require: K - partial clique, P - potential node set, D - the explored node set
Ensure: K is a maximal clique, if P = ∅ ∧D = ∅

function explore(K, P, D)
if P = ∅ ∧D = ∅ then Report K as a maximal clique
else

up ← |chooseP ivot|(P )
for all v ∈ P \N(up) do

K ← K ∪ {v}
Pv ← P ∩N(v)
Dv ← D ∩N(v)
|explore|(K,Pv, Dv)
D ← D ∪ {v}
P ← P \ {v}
K ← K \ {v}

end for
end if

end function

The pivot selection has a major role in the exploration strategy since it reduces the

exploration space and enables early cuts of the “false” branches on the solution tree, as

explained by Koch [103]. Cazals et al. [32] present various strategies to choose the pivot

element. According to the literature, and particularly to [32], the strategy proposed by

Tomita et al. [196] is the most efficient so far. This strategy (Algorithm 3.3.2) chooses,

as long as possible, a pivot that has the maximum number of neighbours inside the

potential set of nodes P. If such a choice cannot be made, one of the reasons could be

that the nodes contained by P are not connected at all. In the case of a node having

the same number of neighbours, a random decision is made.

Algorithm 3.3.2 Tomita et al. Strategy [196] for pivot selection

Require: P - potential node set
Ensure: pivot, according to [196] Strategy

function choosePivot(P)
pivot← maxu∈P | P ∩N(u) |

end function

In an informal description of Algorithm 3.3.2, for each step the pivot is chosen from

the potential set of nodes as the node with the highest neighbourhood. Linked with the

“for” step from Algorithm 3.3.1 (v ∈ P \N(up)), the pivot minimize the exploration set.

Tomita et al. [196] gives a formal proof of this observation.

The Bron & Kerbosch [24] algorithm has not been tested on large data, as Tomita

et al. [196] present it. Moreover, the algorithm is not adapted for dynamic structure

changes, since the algorithm manages a complete image of the graph to process. In this

chapter we propose to adapt the original serial Bron & Kerbosch’s algorithm [24] with

Tomita et al.’s pivot selection strategy [196] into a distributable version.
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3.3.2 Algorithm

The Dynamic Distributable Maximal Clique Exploration Algorithm (DDMCE) uses

a tree based representation of the solution in order to transform the classic Bron &

Kerbosch’s algorithm [24] into a distributable version.

The Solution Representation

DDMCE computes a tree-based decomposition from the initial graph representation to

encode the solution of the MCE problem. As presented in Figure 3.1, the algorithm

starts with an artificially introduced root named {∗} and on which the exploration

algorithm is applied, that generates the tree. As stated before, one central component

of the algorithm is the pivot, a node which has the property of balancing the solution

tree. From the pivot selection perspective, the Tomita et al.’s strategy [196], listed

as Algorithm 3.3.2, is proven to be the most efficient [32]. On Figure 3.1, the pivots

selected thanks to the Tomita et al.’s strategy are highlighted in boxes placed at the

right of the tree nodes.

1

2

3

45

6

*

2 6

1 4

5 3 5

4

5

is decomposed in

2

4 4

Q: {{2,1,5},

{2,4,3},

{6,4,5}}

{2,4,5},

Figure 3.1: Graph to tree transformation, done with DDMCE, using the Tomita et al.’s pivot
selection [196]. The cliques found are presented in the Q set and the pivot at each step is
presented in the highlighted boxes.

The tree-based structure ensures that each path from root to leaves is optimal. With

such a representation, all suboptimal solutions are eliminated at construction time. A

new node is added in the solution tree at each iteration of the algorithm and when a

node is invalidated, it is marked for removal. On the other hand, when a node is known

to be part of a final (optimal) solution, the node and the whole path is marked as final.

Thus, the optimality of the tree is guaranteed at any time.

DDMCE Algorithm

A complete listing of the DDMCE algorithm is available as Algorithm 3.3.3.

This algorithm is initialized with a potential node set, the explored node set and the

current vertex which needs to be expanded. The potential node set and explored set are

strictly linked with the currently processed vertex. This relation enables parallelization,

as two nodes can be processed independently, since their potential set and explored set

are independent.

In the case of an empty potential set, which corresponds to the final steps of the

algorithm, the current node could be final or the node need to be removed because the
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Algorithm 3.3.3 DDMCE algorithm

Require: P - potential node set, D - explored node set, vi - current vertex from tree
representation

Ensure: vi is marked as final, if P = ∅ ∧D = ∅
function explore(P, D, vi)

if P = ∅ then
if D = ∅ then
|markFinal|(vi)
|propagateF inal|(vi)

else
|markRemoval|(vi)

end if
else

up ← |chooseP ivot|(P )
|markPivot|(vi, up)
for all v ∈ P \N(up) do

ve← |createNode|(v)
Pv ← P ∩N(v)
Dv ← D ∩N(v)
|parallelExplore|(Pv, Dv, ve)
D ← D ∪ {v}
P ← P \ {v}

end for
end if

end function

solution is suboptimal. Optimal solutions are obtained when the already explored and

the potential set are empty (P = ∅ ∧D = ∅). In the case of suboptimal solutions, the

current node is marked for removal.

The functions markFinal and propagateFinal mark the current node from the so-

lution tree as final, and the node becomes part of an optimal solution. Thereafter,

the final mark is propagated to the whole path, up to the root, labelling the whole

clique as optimal. In the case of sub-optimality, the current node is removed with the

markRemoval function.

Afterwards, the parallelExplore function wraps the whole data on a new parallel call,

which is either transmitted to a new processor or processed locally, according to the

number of available processors used for the task. In the end, for each parallel call, the

same explore function is used.

For instance, when exploring the graph described in Figure 3.1, the Algorithm 3.3.3

produces the following partial results:

Step 1: vi = ∗, P = {1, 2, 3, 4, 5, 6}, D = ∅, pivot = 2

Step 2: vi = 2, P = {1, 3, 4, 5}, D = ∅, pivot = 4

Step 3: vi = 1, P = {5}, D = ∅, pivot = null

Step 4: vi = 5, P = ∅, D = ∅  vi = 5 - marked as final  {5, 1, 2} - marked as

final
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Step 5: vi = 4, P = {3, 5}, D = {1}, pivot = null

...

At the end of the exploration, the full tree is marked as final and the {2, 1, 5},

{2, 4, 3}, {2, 4, 5}, {6, 4, 5} sets are also marked as final. These sets correspond to the

clique solutions found by our algorithm.

Before presenting the implementation of our system, we would like to introduce a

series of set definitions, concerning the solution (previously introduced as K in Algorithm

3.3.1), the potential exploration (P) and the already explored (D) set. This is followed

by a series of observations on the dynamic set transformations and a brief discussion

over the formalisation part.

Set definitions

Due to the tree representation of the solution, the three K, P and D sets used in Bron

& Kerbosch Algorithm, can be computed at runtime, reducing the storage necessities.

• K set, representing the current detected clique, is contained in the tree represen-

tation: as every path in the solution tree represents an optimal clique detected, a

given K set could be found as a path in the tree.

• P set, which contains all the potential nodes, can be computed with the following

formula:

Pu =

{

V if u = R (R is the root node of the solution tree)

Pp ∩N(u) \ SL(u) with p the parent of the node u
(3.2)

Proof. The first statement PR = V occurs at the algorithm initialisation for P ←

V , when vi ← R. The more generic Pu definition occurs at the construction of

the new child nodes (v):

Pu = Plast ∩N(u) (3.3)

Plast = Pp \ Sprocessed (3.4)

Sprocessed = {v ∈ Pp \N(pivot)|v − has been previously processed

∧p− is the parent of v} (3.5)

According to tree set definitions and tree construction, Sprocessed is equivalent

with SL(u). Following equations 3.3,3.4 and 3.5 the Pu equation can be rewritten

as: Pu = Pp ∩N(u) \ SL(u), for u 6= R.
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• Du set, representing the nodes already processed, can also be computed at run-

time:

Du =

{

∅ if u = R (R is the root node of the solution tree)

Dp ∩N(u) ∪ SL(u) with p the parent of the node u
(3.6)

Proof. Similarly to previous proof, the statement DR = ∅, corresponds to the

algorithm initialisation with D ← ∅, when vi← R. The Du definition is obtained

as follows:

Du = Dlast ∩N(u) (3.7)

Dlast = Dp ∪ Sprocessed (3.8)

Sprocessed = {v ∈ Pp \N(pivot)|v − has been previously processed

∧p− is the parent of v} (3.9)

According to tree set definitions and tree construction, Sprocessed is equivalent

with SL(u). Following equations 3.7,3.8 and 3.9 the Du equation can be rewritten

as: Du = Dp ∩N(u) ∪ SL(u), for u 6= R.

Dynamic transformation

Thanks to the tree based representation, the whole graph does not need to be repro-

cessed in case of modification. The dynamic operations considered are edge addition

and edge deletion, since node operations are generalisation of the corresponding edge

operators. Dynamic changes in the graph structure can lead to partial inconsistency

in the solution tree. Therefore, all the branches in the tree that have been affected by

these changes have to be recomputed and revalidated.

Figure 3.2 shows that when the graph changes, the nodes of the tree mutate accord-

ing to the new representation. In Figure 3.2a, by adding a new edge between nodes 3

and 6, where neither of them were selected as a pivot, only the sub-tree having 6 as root

needs to be recomputed. The vertex 3 is currently only a leaf in this decomposition, so

it does not need to be revalidated. In Figure 3.2b, the edge is added between nodes 2

and 6, and 2 was selected pivot for the root, the sub-tree given by node 6 needs to be

removed and the one given by node 2 needs to be revalidated. This case represents also

a worst-complexity example, because the revalidation decision taken is equivalent with

the root revalidation. This scenario may happen in the case of very dense graphs, or

simply with near-complete nodes.

More formally, for a new edge (e=(n1, n2)), two different situations can be observed:

• In the case of an addition of a regular edge (without pivot influence, Figure 3.2a),

all the sub-trees having n1 ∨ n2 as roots have to be reprocessed.

• When one of the nodes involved in the edge operation is a pivot in the graph

(Figure 3.2b), all the branches from the other node are removed and the sub-tree

64



Detection and Integration of Affective Feedback into Distributed . . . Ovidiu Şerban

1

2

3

45

6

*

2 6

1 4

5 3 5

4

5

-->

2

4 4

3

(a) Graph Transformation by adding a new
edge

1

2

3

45

6

*

2 6

1 4

5 3 5

4

5

-->

2

4 4

6

x

(b) Graph Transformation by adding a new
edge (pivot influence)

Figure 3.2: The graph to tree of the clique algorithm during dynamic transformation. The
highlighted (green) nodes need to be reactivated in order to recompute the tree.

starting from the pivot is recomputed. In other words, each new neighbour of the

pivot becomes part of its sub-tree.

Discussion

Several observations can be made:

• The P set decreases on every call of the explore function (see Algorithm 3.3.3).

For instance, a processing unit which is exploring node {6}, with the associated

solution tree sT6, needs to explore only the sub-graph given by sGP6∪D6
. In other

words, while a part of the solution is processed, the full graph representation is

not required. The sub-graph given by the P6 ∪D6 vertices is sufficient.

• The chosen pivots need to be remembered on the solution tree, since they have a

strong influence on the tree representation.

• The explore function is designed so that it does not need to run on the same

machine or thread, according to the distributed implementation.

• The tree-based structure of the solution allows a distributed processing strategy

due to the data independence of all the children. After the processing of the

parent node (e.q. root node), all the children can be processed at the same time

(distributed or parallel processing).

A good implementation of a distributed algorithm has to take into account all these

heuristics, since they would boost the performance of the system.

3.3.3 Implementation

Architecture

The DDMCE algorithm is implemented within a Message Processing Interface (MPI)

architecture proposed by [181] (see Figure 3.3). The message is designed to be fast and

contains sufficient information to expand the solution tree.
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Figure 3.3: The distributed processing pipeline.The master process generates the message queue
{M1...Mk}. Pi represents the i-th processor which takes a message and generates the solution
sub-tree attached to the corresponding Mj . In this setup we have k messages and n processors,
with k ≫ n.

First of all, the Queue Generator receives the graph structure and decomposes it:

a sub-tree to process by message. Then, the resulting message queue is stored as a

shared data in the memory. Each sub-tree is processed by a processor (also called

worker). In this example, k messages are generated and processed by Pn workers (n

fixed by the hardware configuration used). Each Pi generates a solution to its own

sub-problem, starting from the Mj given message and having as output a sTj solution

sub-tree. Finally, all the sub-trees are merged in order to reconstitute the solution.

To avoid node synchronization issues, the graph data is read-only for the workers, so

that data cannot be modified by the algorithm in any way. The only graph modifications

allowed during the process are external from the algorithm and corresponds to the

dynamic character of the graph.

In our design, two types of workers are used: a worker having the specialised task

of generating the message queue, starting from the graph, and workers using multiple

processors to generate the final solution. Fundamentally, the same Algorithm 3.3.3 is

executed by both of the workers, only the input data type changes. At the initialization

step, when the message queue is created, the P set contains all the nodes of the graph.

While the Queue Generator is running, each call to parallelExplore is pushing a new

message to the queue. At runtime, the Queue Generator remains latent in order to

process any external change in the graph structures and to push new messages accord-

ing to graph modifications. Whereas the Queue Generator is in charge of generating

messages, the other workers apply the Algorithm 3.3.3 and generate the solution tree

locally. Every call to parallelExplore creates a local explore message. After all the so-

lution sub-trees are computed, the merge is easily done, since all sub-trees are inserted

at the root node, called {*} in the Figure 3.1.

One of the major components involved in the data exchange mechanism and pro-

cessing steps is the message architecture. In general, in order to gain speed, a message

should be designed to encapsulate all the useful information. Nevertheless, redundant

information should be avoided in order to increase the transport speed. In our approach,

the message contains a tree node, which encapsulates the two sets used in the algorithm:

P (potential set) and D (already explored). Moreover, it also contains the current node

(u) and the pivot (p).
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Strong points

The tree representation is robust to structure changes, even if these changes occur in

real time. All the structural modifications are computed at runtime by the Queue

Generator, and are injected into the message queue. In other words, a modification to

a node or to an edge in the graph is modelled as a sub-tree revalidation in the solution

tree, and leads to add the corresponding node to the sub-tree in the processing queue.

Similarly to dynamic situations, DDMCE offers a high re-usability of a given solution

for a graph. In case of graph modifications after a complete process by DDMCE, only

partial computation, linked with the inconsistent or partial sub parts of the solution,

is needed. In more dramatic scenarios, such as hardware failure, lost nodes could be

recomputed as well. In fact, in order to recalculate partial cliques with DDMCE, the

only verification that should be done is the lookup of inconsistent node, which usually

takes less time than applying the whole algorithm from scratch. A partial solution is

obtained when the exploration tree is incomplete. Finding inconsistent nodes requires

only the exploration of the last level of the solution sub-tree to detect if the P set

associated to each node is not empty.

Based on the space reduction observation (first paragraph in Section 3.3.2), our

algorithm does not need a full image of the graph for every processor. While exploring

a new solution, having a node with an exploration set (P) and the nodes already explored

(D set) associated, only the image of the sub-graph attached to these two sets are stored

in memory.

Finally, the graph exploration problem is decomposed into a Depth-First tree explo-

ration by DDMCE, which is more efficient than the Breadth-First strategy. As a clique

is represented by a path from the root to a leaf in the tree representation, a depth-first

exploration enables to remove every cliques found from the tree, once processed, and

therefore to save memory.

Technical details

The DDMCE algorithm is implemented using Java programming language (Oracle dis-

tribution, version 1.7.0 for Linux x64 platforms) and Colt library [33] (version 1.2.0).

The implementation results rely on a simulated version of a distributed environment,

where the whole code runs on a multi-core machine. Even if the implementation can be

considered rather parallel than distributed, for the moment, the design has been made

having in mind the distributable aspect of the algorithm.

To obtain a fully distributed algorithm, the only structure that should be modified

is the Message Queue. Currently, two different implementations are proposed, the first

one is based on a shared queue maintained entirely in memory, that suits well small

graphs (less than 1 million cliques), and the second one is based on a shared MySQL

database ([206]), that is used to process larger structures.

This architecture is evaluated over several experimental setups, covering from simple

static experiments, to parallel version and dynamic cases.
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3.3.4 Experiments

In order to evaluate DDMCE, experiments have been conducted on several graphs. DI-

MACS Database ([96]) contains graph examples from various fields, some obtained from

real data (i.e. Hamming graphs) and others obtained by using strategy-based gener-

ators (i.e. Johnson graphs). Unfortunately, DIMACS does not suit well our purpose

since the proposed graphs are very small and most of the algorithms designed for this

database have been finely tuned to solve such a cases. We therefore decided to test the

DDMCE algorithm against the best state of art algorithm, proposed by Tomita et al.

[196], on large and randomly generated dynamic graphs.

The random graph generator used is a simple edge builder based on linear node

sampling in order to create a neighbourhood. It receives as input the number of desired

nodes and a density, and it builds an uniform distributed graph with variance for density

of around 1%. The same algorithm is also used to generate extra nodes when simulating

the dynamic effect.

The experimental setup have been tested on a Dell I7 machine (8 cores, with 1.6

Ghz per core), with Ubuntu Linux, x64 version. A second Xeon machine has also been

used to test the dynamic part of the experiments, having 4 cores at 1.8 Ghz per core.

The Java Virtual Machine (version 1.7.x for Linux x64) offered by Oracle enabled to

obtain the best speed offered by a Java platform in both configurations.

Multiple graphs have been built, with the same number of nodes and densities, to

evaluate DDMCE performances. For all these graphs, the mean (x̄) and variance (σ2)

are computed for both the running time and number of cliques. In order to compare the

DDMCE results with the CLIQUES algorithm [196] results, the same measure, called

/clique, is also used during the experiments. It describes the average time needed to

process 106 cliques. This measure is computed at each run. More formally, the measure

can be calculated using the equation 3.10, where time represents the running time of

the algorithm (in seconds) and #cliques is the number of cliques.

/clique =
time× 106

#cliques
(3.10)

Table 3.1 presents a comparison between the mean of DDMCE running times and

the ones presented by Tomita et al. [196] with CLIQUES Algorithm. It should be

noted that, for a robust estimation, the running times presented for DDMCE are the

average of ten runs on different graph configurations (same density and number of

nodes, but different number of cliques), whereas the running times of the CLIQUES

Algorithm correspond to a single configuration. For most of the density configurations,

our algorithm outperforms CLIQUES (marked in bold). For the other densities, the

running times are approximately the same.

The second experiment concerns a dynamic environment that has been simulated

by adding a new node to the graph during the processing. Each newly added node has

the same neighbourhood density, as for the static case. The running times are presented
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Generated DDMCE CLIQUES [196]

n ρ #cliques time(s) /clique #cliques time(s) /clique

1,
00

0
0.01 4,723 0.058 12.36

0.03 10,486 0.122 11.65

0.05 21,158 0.175 8.26

0.07 45,846 0.280 6.11

0.10 99,672 0.503 5.04 99,062 0.210 2.12

0.15 349,313 1.086 3.11

0.20 1,203,454 3.369 2.80 1,183,584 2.250 1.90

0.25 4,299,261 12.008 2.79

0.30 15,935,818 57.386 3.60 15,362,096 33.180 2.16

5,
00

0

0.01 96,514 0.617 6.40 49,738 10.860 218.34

0.03 514,312 2.045 3.98 141,651 11.180 78.93

0.05 1,789,995 6.988 3.90 215,129 11.740 54.57

0.07 4,081,340 18.635 4.57

0.10 18,442,189 95.025 5.15 18,483,855 86.600 4.69

10
,0

00

0.01 347,898 3.003 8.63 348,552 14.780 42.40

0.03 3,741,993 19.004 5.08 3,738,814 41.290 11.04

0.05 12,182,435 98.022 8.05 12,139,182 109.780 9.04

0.07 42,705,673 398.129 9.32 42,572,404 338.230 7.94

0.10 228,848,693 2,527.744 11.05 229,786,397 1,825.450 7.94

Table 3.1: Running times for random generated graphs. n is the number of nodes and ρ is
the density. The values presented for DDMCE are the average of the #cliques and time(s)
measures, whereas for CLIQUES algorithm the values are those presented in Tomita et al.
article [196].

in Table 3.2. The Tdynamic and Tstatic times are defined in seconds and the /dynamic

measure is given by the equation 3.11:

/dynamic =
Tdynamic

Tstatic

(3.11)

In a dynamic context, the maximal running time is equal to the time needed to

compute all the cliques in a static context. This happens when a node with a very

dense neighbourhood is dynamically added, which triggers an update on the whole tree

representation. Fortunately, on real data (for instance social networks), such nodes are

very rare [124].

A clear image over the computation times is needed, therefore the experiments are

conducted on a multi-core platform. The serial case is carried out using a single core

exploration, whereas the parallel case is managed with multiple cores (2 or 4). During
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n ρ c
1,0

00

.01 1 .342 .029 .084

.01 2 .250 .021 .086

.01 4 .240 .022 .092

.03 1 .598 .061 .102

.03 2 .557 .043 .077

.03 4 .543 .043 .078

.05 1 .776 .119 .154

.05 2 .836 .098 .117

.05 4 .996 .101 .101

.07 1 .992 .210 .212

.07 2 .886 .164 .185

.07 4 1.071 .160 .149

.10 1 1.617 .483 .298

.10 2 1.215 .388 .319

.10 4 1.433 .365 .255

.15 1 4.683 1.037 .221

.15 2 3.217 .906 .281

.15 4 3.266 1.015 .311

.20 1 16.819 2.360 .140

.20 2 9.527 1.852 .194

.20 4 9.781 2.069 .211

.25 1 67.404 8.501 .126

.25 2 37.192 5.381 .145

.25 4 35.882 5.665 .158

.30 1 281.932 40.488 .144

.30 2 160.485 22.151 .138

.30 4 149.339 21.711 .145

.01 1 1.687 .125 .074

5,0
00

.01 2 1.266 .099 .078

.01 4 1.324 .100 .076

.03 1 9.010 .541 .060

.03 2 5.673 .449 .079

.03 4 5.363 .432 .081

.05 1 30.805 1.267 .041

.05 2 18.585 1.103 .059

.05 4 17.828 1.102 .062

.07 1 90.080 3.854 .043

.07 2 54.499 2.804 .051

.07 4 52.718 2.746 .052

.10 1 408.919 19.324 .047

.10 2 245.741 11.875 .048

.10 4 235.444 11.580 .049

.01 1 13.114 .292 .022

10
,00

0

.01 2 9.522 .228 .024

.01 4 9.246 .194 .021

.03 1 99.625 1.788 .018

.03 2 62.055 1.405 .023

.03 4 57.786 1.593 .028

.05 1 467.644 11.138 .024

.05 2 286.653 7.247 .025

.05 4 269.613 6.687 .025

.07 1 1,768.328 59.519 .034

.07 2 1,075.273 37.237 .035

.07 4 1,015.318 34.676 .034

.10 1 10,550.762 491.325 .047

.10 2 6,379.845 301.977 .047

.10 4 6,068.725 282.626 .047

n ρ cTStatic TDynamic /dynamic TStatic TDynamic /dynamic

Table 3.2: Running times for static and dynamic graphs. n represents the number of nodes, ρ
is the density and c the number of cores. All the times (Tdynamic and Tstatic) presented are in
seconds. The /dynamic measure is defined by the equation 3.11.

the dynamic experiment, the exploration was done on a single core. Table 3.2 and

Figure 3.4 summarise all the results of this experiment. In order to evaluate the time

differences between static and dynamic computation, the ratio between the two times

is computed (equation 3.11). This measure is on average 17 % (σ2 = 0.07) for small

graphs (n=1,000 nodes), and 4.7 % (σ2 = 0.02) for larger ones, as it can be deduced

from Table 3.2.

Figure 3.4 synthesizes the comparison of running times for different densities (ρ)

and graph sizes (n). The time is represented on an logarithmic scale in order to cover

all the running intervals for all the densities.

The computing times obtained for the parallel scenario is lower, in comparison to the

same set-up running on serial architectures. In dynamic contexts, the times decrease

more, showing that our approach is efficient to process dynamic graphs. Figure 3.4

illustrates the dynamic difference, which in case of large graph reaches 4.7%, and 17%

for small graphs. In conclusion, DDMCE produces results up to 20 times faster in

dynamic context than recomputing the whole solution, in a single thread architecture.

The complete results obtained by DDMCE are summarized in Appendix B and C.

Based on these results, this algorithm is a good candidate to process the con-

text graph that would generate the affective contextonyms resource. The word co-
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Figure 3.4: Running time comparison for several graph size samples (n) and for different den-
sities (ρ), given on an logarithmic scale representing time.

occurrences generate a very large structure. Moreover, since more documents can

be added at any time, the dynamic co-occurrence graph can be easily regenerated by

DDMCE at any point.

3.4 A new linguistic resource: affective contextonyms

Sentiment analysis and affect detection algorithms are generally based on annotated

data, structured into dictionaries, ontologies or word nets. Among other research prob-

lems, two issues are considered very important in this field: 1) word sense disambigua-

tion and 2) accuracy of the affect detection.

Most of the current approaches use annotated resources based on word nets. Their

structure, founded on synonymic relations, makes the disambiguation process very diffi-

cult. Our model uses contextonyms, which simplify the decision process. Therefore, the

disambiguation issue is transformed into a context matching problem. The second focus

is on the manual annotation of the data followed by a semantic valence propagation.

This approach enables to obtain, through the expansion process, new affective labels

from a set of initial ones. Unfortunately, this is usually done to the detriment of the

precision.

3.4.1 SentiWordNet

Among other WN extensions, SWN [11] has been built automatically by using a valence

propagation technique over WN. It has been designed as a lexical resource for valence
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prediction of a sentence, for applications in opinion mining and sentiment analysis.

SWN contains annotations for mainly all the WN 3.0 synsets, introducing for each of

them a degree of positivity, negativity or objectivity. Each of these valences are defined

on a scale from 0.00 to 1.00, with the sum of all three of them being 1.00.

Figure 3.5 presents the synset (id=a#00064787) associated to the word “good” ,

annotated according to SWN. This word belongs to 27 synsets in WN and SWN (21 as

a adjective, 4 as a noun and 2 as an adverb). For the selected synset, “good” has a

positive value of 0.625 and an objective valence of 0.375. The authors of SWN propose

a triangle based visualisation, where each corner represents a different sub-value of the

valence: Positive (P), Negative (N) and Objective (O).

P: 0.625 O: 0.375 N: 0

good#5  beneficial#1
a#00064787

promoting or enhancing well-being; "an 
arms limitation agreement beneficial to 
all countries"; "the beneficial effects of 
a temperate climate"; "the experience 
was good for her" 

this triangle represents the affective content: 
green for positive, red for negative and blue 
for objective

synset id
synset: word#(word id)
synset gloss (definition)

each synset has "valence set" associated: 
Positive (P), Negative (N) and Objective (O)

Figure 3.5: A SWN [11] example, also containing the visualisation model. P states the positive
degree, N the negative and O the objective one.

Semantic valence propagation

The method of semantic valence propagation refers to diffusion of a valence through

a structured (graph or synset relations) corpus. The spreading is done by respecting

the links between the words. The structures tested so far [11, 161, 66] are different

versions of WN, using the synsets. In very frequent scenarios, the process starts with a

manually annotated set of words (also called “seeds”) and on each iteration the valence

of these seeds is spread on the network. C. Potts gives a more formalised definition of

the algorithm in the Sentiment Analysis Tutorial [156].

A more complex approach involves weighted propagation of valences [19]. The

weights are usually the word frequencies inside the corpus. The spreading of the va-

lences is done in the neighbourhood of the seed nodes according to these weights. This

measure can be extended further by taking into account the neighbourhood density and

node frequency.

SWN is the largest dictionary generated using valence propagation. For instance,

compared to the largest manually annotated dictionary, Harvard General Inquirer [186],

SWN has almost 10 times more annotated words (see Table 3.3), which leads to a better

coverage over the affective vocabulary. However, there is a high disagreement between

SWN and other linguistic resources. It contains conflicts and inconsistencies inherited

from the WN structure that cannot represent multiple contexts of use [156].
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SentiWordNet disagreements with other manual resources

C. Potts [156] conducted a study of SWN disagreements with several other opinion

mining resources (see Table 3.3). Since all the other dictionaries offer discrete labels for

valence, Potts measured the overlap between the maximal valence extracted from SWN

and the labels of other dictionaries.

Dictionary Disagreement Annotation Style Word Count

MPQA [207] 27% +/- 8,221

Opinion Lexicon [112] 25% +/- 6,789

General Inquirer [186] 23% +/- 11,788

LIWC [190] 25% Psychometric Categ. 4,500

SWN [11] - Continuous Valence 117,659

Table 3.3: Disagreement level, according to C. Potts [156], between SWN and several other
corpora

MPQA (Multi-Perspective Question Answering) Subjectivity Lexicon [207] contains

annotations based on the subjectivity level, part of speech and polarity. Polarity corre-

sponds to a discrete valence annotation, having a different label for positive or negative.

Opinion Lexicon is maintained by Bing Liu [112] and contains discrete manual anno-

tations for positive and negative words. Harvard General Inquirer [186] is a lexical

resource which is concentrated in attaching syntactic, semantic and pragmatic informa-

tion to part-of-speech tagged words. It contains positive, negative and hostile1 labels

for most of its containing words. Finally, Linguistic Inquiry and Word Counts (LIWC)

[190] is a proprietary database, containing categorised words to their psycho-semantic

state, which can be translated into negative or positive labels.

SWN presents an average of 25 % disagreement with MPQA, Opinion Lexicon, Har-

vard General Inquirer or LIWC. These disagreements between SWN and other corpora

are due to the construction of SWN, based on automatic semantic propagation.

SentiWordNet ambiguities and inconsistencies

SWN contains conflictual valences for the same word, that corresponds to two distinct

situations:

1. a word has different valences among different synsets (inter-synset conflict),

2. a word has conflictual valences within the same synset (intra-synset inconsistency).

For instance, the ‘heart ’ synsets, extracted from SWN, contains inter- and intra-

valence inconsistencies:

1According to Harvard General Inquirer [186], a subset of 833 words are tagged Hostile. There words
are indicating an attitude or concern with hostility or aggressiveness. In our approach, we consider
these labels as a sub-set of the negative ones.
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1. spirit#8 heart#6: an inclination or tendency of a certain kind; “he had a change

of heart”, +0.5

2. heart#1 bosom#5: the locus of feelings and intuitions; “in your heart you know

it is true”, -0.125

3. spunk#2 nerve#2 mettle#1 heart#3: the courage to carry on; “you haven’t got

the heart for baseball”, +0.25 -0.25

Synsets 1) and 2) show an inter-synset inconsistency, since the valence of heart in

1) is positive, whereas in 2) is negative. In example 3), the inconsistency exists within

the same synset.

The first issue can be solved using context. Considering that each synset corresponds

to a particular meaning, then the valence from SWN is applied to the chosen context.

In practice, finding the proper context only with WN synsets is quite challenging.

On the contrary, the second type of conflict is an artefact of semantic propagation

algorithm of SWN. A word, within a synset, should not have conflictual valences because

it would lead to ambiguous decisions. In practice, this problem is similar to the first

case, because a term with conflictual valences would have two different contexts.

A short statistical analysis highlights that 10,939 words (out of 117,659) from SWN

carry conflictual valences, among which 9,643 words are having conflictual valences in

the same synset. These conflicts represent 9.29% of the whole corpus. Part of these

conflicts are linked with the disagreement levels according to Potts [156].

SentiWordNet and context

WN is one of the widely used linguistic resources in natural language processing ap-

plications. Even so, grouping words into synonymic relations makes very difficult the

decision of choosing the right meaning of a term for a given context. On the other

hand, SWN has been built using automatic semantic propagation over WN. This lead

to the construction of the largest linguistic resource for Sentiment Analysis, with the

drawback of having multiple valences associated to the same synset.

Other linguistic resources, which have been manually annotated, have fixed the

context of each word to the most common one. This lead to very low disagreement

between these resources.

In our model, we introduce the context on each SWN word, which decreases the

inconsistency of the dictionary. This is done in a similar way to the manual annotation,

by fixing the context, but rather than doing it manually (which is a time consuming

task), we are building it automatically.

3.4.2 Modelling context with contextonyms

Contextonyms were introduced by Ji et al. [94] to model contextual use of words. A

contextonym graph links words according to word co-occurrences in a certain window2

2Usually, the window size is fixed to 5 words [94].
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and is represented by a network with words as nodes and co-occurring frequencies as

edges. In order to extract strong relations between words, a clique exploration algorithm

can be applied to a contextonym graph. The collected cliques, that correspond to strong

context of use, are called “contextonyms” [94]. As a reminder, a clique is represented by

a complete sub-graph or, in other words, a sub-graph in which each node is connected

to all the other nodes of the clique. In a contextonym graph, a clique summarizes

the strong semantic links between the words that composed it, and therefore could be

considered as a context of use [94]. Contrary to synsets, all the words of a contextonym

are not equivalent since they are weighted by pairs according to their co-occurrences.

A contextonym model uses a textual corpus as support. The extracted contexts are

therefore representative of the corpus. From this textual corpus, a word co-occurrence

graph is constructed: the contextonym graph. To construct a contextonym model, we

propose a four-step process.

Preprocessing step

The first step, called preprocessing, consists in filtering the text information of the

chosen corpus, in order to remove any useless information such as special characters,

punctuation, camel-case separators and stop words. Are considered as stop words all the

prepositions, articles and other short words3 that do not carry any contextual semantic

value.

Contextonym graph extraction

A co-occurrence network is then constructed, that corresponds to the contextonym

graph, counting the word co-occurrences in a certain window within the filtered textual

corpus. These occurrences are extracted for each pivot word, by fixing a window size

of 5 words. In other words, the co-occurrences are counted for the two words preceding

and two worlds following the pivot.

Node filtering

In order to reduce the noise, several filtering techniques are proposed by Ji et al. [94]:

1) a global filter, which eliminates all the nodes that occur very rarely in the corpus,

2) a local filter, which is applied to every node and remove the neighbours with a low

occurrence and 3) a child filter, which is similar to the local filter but it is applied to the

neighbours of every nodes. In our approach, we applied the global filtering technique,

by removing very low word frequencies from the graph. The other two filters are used

to delete very low word co-occurrences from the model.

3The stop word collection we use to build a contextonym model is available at http://www.

textfixer.com/resources/common-english-words.txt.
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Clique extraction

Finally, a clique exploration algorithm is applied to the contextonym graph in order to

extract the contextonym model. We use the DDMCE algorithm, previously presented,

dedicated to clique exploration on large and dynamic data. These approach is applied

on our corpus and all the collected cliques are included the contextonym model.

3.4.3 A new linguistic resource: an affective contextonym model for

dialogues

An accurate linguistic model is important for most of the applications based on natural

language processing. Therefore, the choice of the corpus used to compile our model is

critical.

The first option was Project Gutenberg4, due to the large amount of free e-books

available at this source. Moreover, these documents are very trustworthy since most of

the books are constantly reviewed by the community for spelling or formatting errors.

Unfortunately, the vocabulary used within this corpus is too formal for a dialogue

context.

In order to focus on modern spoken language, we compiled a large movie subtitle

corpus from multiple sources: the Open Subtitle and Podnapisi Archives5. The quality

of the files was assumed from the total number of downloads and the author’s rank on

the website. Moreover, old subtitles (year < 1990) were filtered in order to ensure a

modern (up-to-date) vocabulary. Finally, a total of 53,384 movie subtitle files are kept

for the corpus.

Contextonyms

During the preprocessing step, filters specific to sentence tokenizing on subtitle files were

also applied to remove all the time synchronisation data, as well as advertisements. Even

if the SubRip6 format is clean and simple, a template validation has been performed

to ensure the integrity of the data extracted. From a space reduction perspective, only

the words carrying a strong semantic and emotional value (e.g. nouns, verbs, adverbs

and adjectives) are kept, as WNA is suggesting [188]. This filter can be considered as

a key word extractor.

After the node filtering step, 86,276 words (words whose frequency is higher than

0.01%, which corresponds to the global filtering technique) and 3,948,359 co-occurrences

(with a frequency higher than 0.01 %, done by applying the local and child filter)

compose the contextonym graph. On this data, the DDMCE algorithm was applied,

extracting a total of 702,546 contextonyms (cliques) that compose our model.

4Available at: http://www.gutenberg.org/
5The corpus represents a part of the subtitle database from http://www.opensubtitles.org/ and

http://www.podnapisi.net/
6SubRip (.srt) is a very basic text format used to encode subtitle files.
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A word modelled as an affective contextonym

Once the contextonym model is built, the valences from SWN could be added to each

word. Even if the valences are attached to synsets in SWN, we do not intend to map

the synsets to our contextonyms model, because this would be a very difficult task in

the context of large context graphs. Our purpose is to preserve the existing valences

attached to each word (as part of various synsets) and attach them to our context

model, without modifying the actual valence, if possible.

We consider that each contextonym could not have conflictual valences (multiple

values for the same word or opposite valences inside the same contextonym). In the

case of a conflict, these are solved by choosing a single value for each conflictual word.

For instance, the word “heart” from the previous example has a high frequency in

SWN. In Figure 3.6, we present all the contextonyms associated to this word. They

have been extracted from our subtitle corpus, while the labels are given by SWN. The

word has a neighbourhood of 5126 words and is part of 52 cliques, with a size varying

from 4 to 7 words. Moreover, the same word has 418 cliques associated with a size from

2 to 7. Originally, the clique size of 2 and 3 where filtered, but later they proved very

useful in practical situations.

One example of such a contextonym is given by: sadness (valence = -0.75), emptiness

(valence = -0.75), heart (conflictual valence), love (valence = +0.39). This is considered

conflictual since the word “heart” is ambiguous. A second inconsistency is given by the

presence of two negative words (sadness, emptiness) and one positive (love).

Figure 3.6: A fully annotated contextonym graph, representing the whole neighbourhood of
the word ‘heart ’. The labels are coloured according to their valence: blue for positive, red for
negative, purple for mixed-value (conflictual valences) and light-grey for neutral.
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Conflict solving algorithm

Our contextonyms model contains 702,546 cliques, from which 354,109 (50 %) are con-

sidered conflictual.

A clique (Q) is considered conflictual if more than one opposite valence can be

chosen for each contained word (w). In order to establish a common measure for every

possible choice of a valence on a certain node, a dominant has to be defined, as given

by the equation 3.12:

dominant = max
s∈S

∑

w∈Qs

freq(w)× valence∗(w) (3.12)

where we define the set S as containing all the possible valences of a word: positive,

negative or neutral. Qs represents the sub-clique containing words of a given valence

s. The valence∗(w) represents the valence chosen for the word w at the moment of the

computation. The freq(w) is the relative frequency associated to each word, when the

context graph is computed. These relative frequencies are computed in the context of

a clique, by taking into account all its nodes.

There are multiple ways of choosing a proper valence for a word from all the possi-

bilities offered by SWN, but the dominant function can be always computed. Moreover,

we suppose that the clique is non conflictual if:

1. the dominant is unique, i.e. there is no other side having the same dominant value

2. the value of the dominant is more than 0.1, which means that there is at least a

significant difference between the positive, negative or neutral side

The conflict can be solved in multiple ways and we propose three methods for this

purpose:

• a method based on maximum valence selection (SWN Max)

• an heuristic based on a greedy dominant decision (Contextonym Average)

• a dispersion minimization method (Contextonym Optimized)

SWN Max resolves the conflicts by choosing the maximum valence for each WordNet

synset. This method is similar to the proposition of C. Potts [156], with the difference

that equal valences (opposite or not) are not treated as neutral. In fact, for equal

opposite valences (very few cases) we take both sides as reference.

Contextonym Average This method is a greedy dominant selection and consists in

two different strategies: first is the choice of a dominant side for this clique (positive,

negative or neutral) and second, the selection of a valence for a selected node.

For the dominant decision, we assume that every node has a maximal valence po-

tential. In this scenario, for the dominant computation, we always choose the maximum
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absolute valence from the list associated to the node. If two opposite options exist, we

choose the valence with more occurrences.

After the dominant is computed and a side has been fixed for each clique, for each

node, only the valence corresponding to the given side is chosen. If more than one

such valence exist, we compute the average of the existing valences and report it as the

selected value.

Contextonym Optimized For our second approach, we decided to explore every

possible choice for a valence. Since the hypothesis of a strong dominant for every clique

has been made, this idea suggests the choice of similar valences for every node. This

similarity is measured in terms of dispersion across the clique and it is given by the

equation 3.13:

disp =
∑

w1,w2∈Q

freq(w1)× |valence(w1)− valence(w2)| (3.13)

This method minimizes the dispersion for any valid solution. A solution is considered

valid if a strong dominant can be computed with the valences chosen by this algorithm.

By using this method, no dominant could be computed for 12 cliques, for which the

valences have been manually decided.

By introducing the context (Contextonym Average and Contextonym Opti-

mized), we manage to solve all the SWN ambiguities and inconsistencies, which is the

first of our major contributions. We do not manage to cover all the words from the

discrete dictionaries, because of their rarity in our corpus.

3.4.4 Validation

For the validation we decided to make a similar setup as C. Potts [156] did for his

disagreement experiment. We compare the valences from a set of well known affective

dictionaries to SWN or our proposed models. Due to the fact that all the dictionaries

used in the comparison contain only labels for the valence (positive or negative), we

also transform the SWN valence into discrete labels. The first dictionary we choose is

the Opinion Lexicon [112], followed by the Harvard General Inquirer Lexicon [186] and

MPQA [207].

In order to compare all these linguistic resources, we propose a simple Overlap com-

puted between our models and the lexicons. The first is an SWN Overlap computed

on the SWN dictionary. If a word has already a conflict in SWN, than it is reported as

a disagreement without regarding the valence in the other dictionary.

The SWN Max overlap computes a disagreement rate between the maximum va-

lence for each word and the discrete valence found in the lexicon. This is based on our

conflict resolution strategy, similar to the proposition of C. Potts [156].

Contextonym Average and Contextonym Optimized are contextual models,

so an agreement is reported if there exist a context where the valence from the lexicon is

found. Otherwise a disagreement is reported. These correspond to our conflict solving
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methods described in the previous section.

The not found rate is represented by the number of words found in the lexicon

which cannot be found in SWN or our contextonym model.

Opinion Lexicon (OL) [112] contains discrete manual annotations for positive and

negative words. Moreover, it contains several misspellings for frequently used words.

Figure 3.7 presents all the disagreement and not found rates, for the four strategies.

Not Found

Conflicts

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

27.69%

50.10%

27.69%

30.56%

43.47%

27.03%

43.47%

21.35%

SWNOverlap
SWNMax
ContextonymAverage
ContextonymOptimized

Figure 3.7: The Opinion Lexicon (OL) [112] disagreement and not found rates in comparison
to different strategies for SWN corrections

MPQA Subjectivity Lexicon [207] contains annotations based on the polarity (pos-

itive or negative). Figure 3.8 presents a comparative diagram of all these results. The

overlaps are computed in the same way as for the Opinion Lexicons.

Not found

Conflicts

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

24.31%

52.58%

24.31%

31.63%

39.08%

24.60%

39.08%

20.45%

SWNOverlap
SWM Max
ContextonymAverage
ContextonymOptimized

Figure 3.8: The MPQA Lexicon [207] disagreement and not found rates in comparison to
different strategies for SWN corrections

Harvard General Inquirer (HGI) [186] is a lexical resource which is concentrated in

attaching semantic information to the words. It contains positive and negative labels

for most of its words. The overlaps are computed in the same way as for the previous

lexicons. Figure 3.9 presents a comparative diagram of all these results.

The original disagreement rates are quite high (50.10% for OL, 52.57% for MPQA

and 78.16% for HGI) and they are mainly related to the original conflicts found in SWN

dictionary. Computing the maximum of each valence set decreases the disagreement

(30.56% for OL, 31.63% for MPQA and 41.45% for HGI). It is not clear how the context

of the word is chosen by this method, since the maximal valence of a synset does not

necessarily correspond to the most frequent meaning of it.

The Contextonym Average method uses an heuristic similar to the one proposed by
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Not found

Conflicts

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00%

9.70%

78.16%

9.70%

41.45%

18.96%

24.03%

18.96%

17.89%

SWNOverlap
SWNMax
ContextonymAverage
ContextonymOptimized

Figure 3.9: The Harvard General Inquirer (HGI) Lexicon [186] disagreement and not found
rates in comparison to different strategies for SWN corrections

the maximum method: the dominant is fixed by the maximum. The main difference

is that the choice of a unique valence for any word present in a clique is done in a

contextualized way. This leads to the discovery of a new context for certain words,

which further decreases the disagreements (27.03% for OL, 24.60% for MPQA and

24.03% for HGI).

Our last method manages to provide a unified algorithm for the choice of the domi-

nant and the valence associated to each word. Moreover, the usage of the Contextonym

Optimized method makes the valence selection consistent inside the clique, because they

were chosen to minimize the dispersion. This leads to the lowest disagreement computed

among the methods proposed: 21.35% for OL, 20.45% for MPQA and 17.89% for HGI,

which is less than half of the initial amount.

The not found rate for the SWN Overlap and SWN Max cases is the same, since

the metrics are based on the same dictionary: the raw form of SWN. For Contextonym

Average and Contextonym Optimised, the not found rate is higher than in the case

of previous two methods, but this is not surprising since very low occurring words were

filtered out from our corpus. In our preprocessing phase, we applied a node filtering

step which preserved only words whose frequency is higher than 0.01% and word co-

occurrences with a frequency higher than 0.01 %. Therefore, the not found rate could

be improved by adding more words with low frequencies in our model. Another aspect

of this problem is linked to the style of our corpus. The subtitles are linked to dialogue

style, whereas OL, MPQA and HGI contain words that are not only used in dialogue,

but also in writing. Moreover, OL contains several common word misspellings, which

are preserved in our comparison. Since we selected only the high quality subtitles, we

expect a very low frequency of misspellings in our corpus.

In the proposed approach, the context is modelled in a simple but very effective

way. Moreover, with our Contextonyms Optimized, we managed to find an automatic

method for the context and valence selection. For the HGI case, we managed to decrease

the number of conflictual words from 8 out of 10 down to 2.

3.5 Discussion

In our approach, the context is a key part of the solution for the disambiguation problem.

We model the context by using graph-based structures and we extract the strong-
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context (word co-occurrences with high frequency) by modelling it into contextonyms.

By using these approaches, the disambiguation process is easy and more natural than

in any previous work. Moreover, we model context as a contextonym (cliques within a

WordNet) graph, which add a new semantic level to WordNet.

A new method for clique exploration called DDMCE is proposed, dedicated to large

graph structures. Moreover, the DDMCE algorithm takes into account dynamic graph

structures, very useful for practical problems. The platform offers a parallel approach,

which can be easily distributed, based on an improvement of the classic exploration

algorithm described by Bron & Kerbosch’s algorithm ([24]) with Tomita et al.’s pivot

selection strategy ([196]). Using a tree representation of our solution, the algorithm

offers a high re-usability of the solutions collected, which gives, in the context of highly

distributed architectures, more robustness to the algorithm. Moreover, DDMCE also

introduces a set of heuristics to solve the data reduction problem, an open issue described

in the Google Pregel article [118].

On the application level, even without the synset conflicts solved, SentiWordNet has

been used successfully in Opinion Mining, Sentiment Extraction and Affective Feedback.

Therefore, providing a model that solves some of these conflicts is a great achievement.

The contextonym model is also dependent on the style of the corpus used to build it.

This issue could be overcome by creating multiple contextonym graphs, one for each

writing style. Moreover, due to the current style of our model, it can be used to detect

user’s affective feedback in interactive systems. To achieve this, a corpus based on

a highly interactive scenario needs to be collected. For this purpose, we propose the

methodology described in the next chapter.
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Affective Interactive Systems
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CHAPTER 4

Affective interaction

"Truly wonderful the mind of a child is."

– YODA, Star Wars Episode II
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4.1. CONTEXT

4.1 Context

Previously we approached the problem of Automatic Emotion Detection, by proposing

several techniques. Our final goal is to integrate all these algorithms into one unified

platform that deals with rich interaction data. This can be approached with various

methodologies and we propose a method to collect a corpus of interactive data, while

building an innovative story telling environment for children.

Building a virtual natural environment, in which the participants can interact with-

out any difficulty, is very challenging. Moreover, introducing a virtual conversational

agent into this kind of environment increase the expectations of the human participants,

up to the point where they can be disappointed by the agent’s capabilities [127]. Build-

ing such an environment for children is even more difficult. Providing them a familiar

environment, with natural reactions from a conversational agent, becomes critical.

Our purpose is to create a new environment, centred around the story telling activity,

which allows all the participants to act naturally, even if the new dialogue partners are

not their usual ones. This setup has two types of participants: a listener (the child) and

a storyteller. The narrator (storyteller), can be either a psychologist present in a video

conference mode or an avatar (an animated virtual character, driven by a psychologist).

During the activity, the child is interacting with one of the partners for the first half of

the story and it continues with the other. Our goal is to compare the two situations

and to measure the difference between the two interaction environments. Moreover, the

affective feedback is also important for our experiments. Observing the children while

interacting with an affective virtual character represents one of our secondary goals.

This is done by setting up a Wizard of Oz scenario, in the context of a storytelling

activity.

4.1.1 Wizard of Oz experiments and avatars

Wizard of Oz (WOz) is a method used in psychological studies, human interaction or

linguistics. During the design process, obtaining some early feedback on the model

is crucial. Therefore, WOz experiments offer the opportunity to overcome the initial

issues of the design, by introducing a new actor into the experiment (“the wizard” or

“the pilot”) which has the role of managing the system, while giving the sentiment

of an artificial intelligence. In dialogue systems, these initial issues are related to the

poor speech recognition for open dialogue or dialogue management. The WOz paradigm

enables us to re-create a natural dialogue environment and to interact with the subjects.

In the study of human-computer interaction, the method of iterative design and

bootstrapping dialogue models is very popular. For instance, Rieser et al. [162] used a

Reinforcement Learning technique to train a dialogue model from few examples collected

using a WOz method. The modalities used to collect the data differ from one experiment

to another, but all have the same basic idea of a pilot driving the activity instead of an

automatic system.
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4.1.2 Corpus collection

In order to design interaction models, some research groups [6] proceed first into a

collection phase, done through a Wizard of Oz perspective. Usually, this phase con-

sists into getting Human-Human or Human-Computer interaction data, followed by an

annotation and pattern extraction phase, which leads to an interaction model1.

Setting up an experiment for this kind of corpus collection is usually very time

consuming, particularly during the annotation phase after the experiment is done. In

some situations, important notes observed during the experiment could be lost, if they

are not annotated at the right time. The approach we propose requires a basic dialogue

model, with some observable interaction states, to be built before the experiment starts.

Moreover, it provides automatic annotation for the collected data.

4.1.3 ACAMODIA Project

The ACAMODIA project is a French PEPS project supported by the Institute for Hu-

manities and Social Sciences (INSH) and Institute for Information Sciences and Tech-

nologies (INS2I) at French National Center for Scientific Research (CNRS). The objec-

tive of this project is to build a familiar environment, centred around the storytelling

activity, that allows to collect rich data from all the participants. The most important

actor is the child, since the project studies his reactions with a new conversation partner

(a virtual character or adult in video conference). Nevertheless, the performance of the

psychologist (in video conference mode or while driving the virtual character in WOz

mode) can be studied as well. The result of this project is linked both to Computer Sci-

ence by developing an interaction model based on the data collected, and to Psychology,

by refining the current theories dealing with child-machine interaction.

From the technical perspective, the project needs to cover several requirements :

1. Scenario development: which includes an interesting story to be developed in the

story telling environment and the protocol formalisation.

2. Multi-modal data collection: a new platform has to be developed in order to

sustain the data collection infrastructure and to enable rich interaction between

a child and the narrator.

3. Data Analysis: which is done from both psychological and computer science per-

spectives.

4.2 Related Work

Most of the current experiments done in the WOz perspective are not reusable

[168, 48, 140], because of their strict link to the experimental set-up. Moreover, the in-

teraction modality or the protocol is not the same in all cases. DiaWOZ-II [16] proposes

1In this chapter, the terms interaction and dialogue are interchangeable, since we refer to interaction
models that are only linked with dialogue (verbal or non-verbal)

87



4.2. RELATED WORK

a simple text based interface used in tutoring studies for engineering and mathematics,

whereas Whittaker et al. [205] use a web-based interface to simulate dialogues in a

restaurant scenario. Based on the same idea of simple text interfaces with complex dia-

logue management, Munteanu et al. [129] propose a state based dialogue management

prototype, with the possibility to introduce real-time new states into the model. Some

early multi-modal interfaces, SUEDE [102] and Artur [13], develop the interaction with

new layers: simulated speech recognition and synthesis (Suede) or image describing the

learning process (Artur).

From the embodiment perspective, Cassell [30] introduced the idea of face to face

interaction with an animated avatar. Even if the level of details used to represent the

virtual character are very high, the low conversational capabilities and the character’s

non-natural reactions, induce inefficient interaction between the human and the system.

This phenomenon is called “the Uncanny Valley” [127]. Moreover, this type of behaviour

affects the empathy of the users towards the agents [15]. To overcome all the issues,

the agent has to respond to the user’s frustration [101] and become more empathic

[135, 157], emotional [154] and react at the right timing with a gesture or posture

adapted to the situation [159].

The influence of the animated virtual character (conversational or non-conversatio-

nal) on the human perception is formalised as the “persona effect”. Pedagogical [128, 14]

and game [158] studies show the existence of a link between the presence of a virtual

character and the user’s performance, whereas Miksatko et al. [122] conclude that no

such impact exists. Grynszpan et al. [72] conducted a multi-modal study, through a

Wizard of Oz perspective, that revealed high influence over the patient’s performance

for user with high functioning autism. The SEMAINE project also started with a WOz

experiment [175], which lead to a simple interaction model integrated into the final

release.

In the context of child interaction, the virtual character’s influence has not been

studied much. An experiment done by Oviatt [141] reveals that children from age 6 to

10 have less disfluencies in speech when talking to a “Jelly-fish” animated character than

in direct communication with an adult. Moreover, children are highly attracted by their

new conversation partner and they accept the engagement. This project concluded that,

due to the high rate of disfluencies, misspellings and pauses, it is almost impossible to

transcribe accurately the child speech with an automatic speech recognizer.

Ryokai et al. [166] conducted a study on the potential usage of an Embodied Con-

versational Agent (ECA), named Sam, on a children tutoring scenario. The task was

to speed up the literacy learning process (reading and writing) through narration. In

this work, Sam tells stories in a collaborative environment. The virtual character looks

like a friend from pre-school, but tells stories in a way that models narrative skills very

important for literacy. Results of this study demonstrated that children had a good

social engagement with the ECA which allowed them to learn rapidly more linguistic

features (i.e. new words or difficult linguistic constructions).

Similar to the ECA experiments, other are conducted using robots. The same level
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of engagement is observed for children with autism [108, 163], in tutoring scenarios

[98, 75] or to develop early cognition processes [200]. The potential of the two fields,

with applications in education and narration, is similar. Testing a conversational or

narrative approach with a robot is slightly more complex and expensive, therefore ECA

are usually preferred due to their ease of use.

Storytelling environment, having an ECA as actor, has been built so far by only few

research projects [64]. Our work uses the virtual character to build social engagement

with a child. Compared to the previous work, our study proposes a formalized scenario

and the “wizard” needs only to supervise its execution. Therefore, we designed a plat-

form called the Online Annotation Toolkit (OAK) that suits all the requirements listed

in the ACAMODIA Project section. Moreover, after the experiment is over, the data

collected is already annotated with several observations.

4.3 Scenario

The challenge for the first phase is to find the proper setup for the experiment and a

story to suit our needs. Several options can be considered: 1) an open dialogue setup; 2)

a non-linear scenario, with a story adapted to each participant; 3) a fixed scenario with

timings and gestures synchronised to the child’s reactions. The first option is a very

challenging setup due to the current transcription errors and dialogue management [141].

The second idea is easier to implement and was the first scenario prototype we created.

The drawback of this method is that it requires multiple pilots to perfectly synchronise

the story with the emotional feedback, gestures, speech management according to the

child’s actions.

The final choice is a fixed scenario, that allows free-context input, adapted to unpre-

dicted situations. Moreover, to make the story more interactive, several communicative

“errors” are included, in order to help the child to react. By using this simplified setup,

a pilot is able to concentrate more on the child’s reactions, rather than making an effort

to “conduct” the scenario.

The story chosen for this experiment is “The lost ball” (fr: “Le ballon perché”), about

a school boy who decided to play with his ball before entering in the class for courses.

During this play, the ball is kicked on a roof. To make the things even worst, the boy

and his friends decide to recover the ball by throwing a boot, a school bag and a scarf.

As they are urged to enter into class, the ball is not recovered. At last, a huge storm

arrives and blows all the things off the roof, enabling their recovery.

The first phase of the setup starts with the presentation of the experiment. All the

questions related to the scenario and equipment are asked, in order to build a confidence

relation with all the actors.

In figure 4.1 we present the selected scenario. One half of the story is told in avatar

mode and the other half by the psychologist in the video conference mode. The story is

presented as 15 image slides, which brings a new level of details to the narration. The

first 7 slides are narrated by one storyteller (virtual character or psychologist) and for

the 8 remaining slides the narrator is swapped. The scenario includes also three types
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1 2 3 4 5 6 7 8 9 10 11 12 13 1514

Avatar Video conference

Naration

Scenario

Interaction errors

Types of errors:

C1 E1 A1 C2 E2A2

C Comprehension E Emotional A Attention

Swap

Figure 4.1: The ACAMODIA scenario, formalised into 15 slides and some of parts of the story
have some communication errors included

of errors, in order to asses the attention (A1 and A2), emotional reflex (E1 and E2)

or comprehension (C1 and C2). For example, during the C1 error, the narrator makes

a semantic mistake by saying that “the boy throws his carrot on the roof”, instead of

saying boot. This type of error is used to test their attention to the details of the story.

The emotional errors E1 and E2 represent a contradictory state of the scenario, where

the agent simulates a negative emotion while speaking about a joyful event. This is

meant to test the cognitive attention of the child, while observing the feedback over it.

At the end of the experiment, for each child, questions about these types of errors

are included in a final survey. Moreover, they are asked to summarise the story and to

detail all the “problems” found during the experiment. Half of the children started the

narration in video conference mode and the other half with the virtual character, which

enables the cross comparison of interaction during the two modalities.

More details about the protocol could be found in Bersoult’s Master Report [17].

The model formalisation would follow the track proposed by Ales et al. [6], in order

to produce dialogue patterns, which are automatically extracted from our data. The

initial work has been done in Pauchet et al. [1] and consists in formalising a method to

automatically extract pattern from manually annotated templates.

This protocol is integrated into the OAK model presented thereafter.

4.4 OAK

OAK unifies different platforms and concepts in a single tool, that is generic and simple

enough to be used in real-time data collection, and requires simple manipulation skills.

The way the avatar is driven has been simplified to the point where all the actions are

very intuitive.

Another key point of the platform is the online annotation, given by the exact

timestamp of the execution of a certain scenario item. This gives an idea about the order

of execution of actions, the durations, and even formalises a trace of the interaction. It
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has been used in real experiments with a good satisfaction level obtained by both the

pilot and the children. Moreover, the collection of useful annotated data is simplified

at the end of the experiment.

To demonstrate the genericness of the OAK toolkit, we describe the scenario formal-

isation and architecture on another interaction scenario, different from the one described

previously.

4.4.1 Scenario formalisation

We define the formal concept of scenario in OAK as a finite state automaton compound

of a set of states and a set of observations. The states are actions that are executed by

the engine or translated directly into BML2 [106] code. The observations correspond

to elements of perception in the real-world, formalised as notes in the OAK scenario

and from which the execution schedule is built.

Whereas the usage of the states is self-explanatory, the observations are used to

maintain a certain logic in the scenario. They are not mandatory, but their usage is

recommended to preserve a uniform level of execution for the scenario. Moreover, the

usage of a state is logged with the timestamps of the appearance in the scenario. No

formal or technical restriction for linking the states and observations are done, but it is

highly recommended to keep the model clean and simple.

Figure 4.2 presents an example of scenario, with several states (s1-s3) and obser-

vations (o1-o5). As for experimental purpose, the transitions between these states are

recorded, since there should be only one logical transition from a state to another,

through the same observation.

s1: Hello
o1: Guest says hello

o2: No reaction

s2: Thank you for your visit.
      Goodbye

s3: Would you like a tour
      of our museum ?

o4: No o5: Yes ...o3: No reaction

Figure 4.2: A simple example of a WOz scenario which can be used with OAK. The boxes
represent states, whereas the rounded boxes are observations

When a state has two transitions leading to two independent states, for the same

observation, the transition model is ambiguous. To keep the transition model clean

enough to be implemented in a dialogue system, it is required that the transitions are

not ambiguous.

Listing 4.1 presents a BML code of the action executed when the action “hello”

(s1 in Figure 4.2) is triggered. This code is specific to Greta Virtual Character [154]

because of the execution backend, but it can be easily modified to suit any other virtual

character or agent that supports BML. The first important part of the code is the speech

2The Behaviour Markup Language (BML) is an XML specific language describing verbal and non-
verbal behaviour specific for humanoid virtual agents [106].
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level where the actual speech is executed. The face level triggers the face animation of

the avatar. In this example this is a face expression representing an intense emotion

(happy-for, intensity=1.0).

1 <oz−bml>

<bml>

3 <speech id ="speech -1" s t a r t="0.0"

language="english" vo i c e="realspeech" t ex t="Hello">

5 <tm id="speech -1:tm1"/> Hello

</speech>

7 <face id="emo -1" s t a r t="0.0" end="3.87">

<description l e v e l="1" type="gretabml">

9 <reference>faceexp=happy−for</reference>

<intensity>1.0</intensity>

11 </description>

</face>

13 </bml>

</oz−bml>

Listing 4.1: The “Hello” BML action with code specific to Greta Virtual Character[154]

4.4.2 Architecture

Our system expands the current open source architecture of the SEMAINE Project

[175], using the simulation part of this project, and embedding new components to gain

full control over the architecture. Moreover, in order to test the child’s adaptation to

the narrator, a mixed setup (ECA and video conference) is done. The OAK system has

three major components:

1. the Semaine Platform, which contains a component based communication system

2. the Greta Virtual Character [154], which is part of the SEMAINE project, and

has been preserved in OAK. Potentially, it can be replaced by any other virtual

avatar, agent or robot (such as NAO [64]) that interprets BML.

3. OAK, which consists in a pilot graphical interface (figure 4.3), and two views at

the user level (figure 4.4)

Mode selection

Free-context states

Video broadcasting
from child side

Story in book format

The scenario states

Figure 4.3: The pilot view of OAK

The first interface (Figure 4.3) is used by the pilot. It has a scenario area, which

represents the collection of all the possible states. A state can be executed at any point,

as many times as necessary. On the right, the free-context library is presented. It
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consists in a set of states that are not directly linked to the context of the story, such

as: “OK”, “You are right”, “Shall we continue ?”. On top of that library, a menu that

allows the selection of the experiment mode is present: none (also known as start), video

and avatar. The start mode corresponds to the beginning of the experiment, through

the setup description phase. The other two modes correspond to the scenario split.

Video conference

Story in 
book format

Greta Virtual 
Character

Story in 
book format

Left Webcam
Right Webcam

Figure 4.4: The two child views designed for OAK

The child interface (Figure 4.4) consists in two different views, one for the WOz part

of the experiment and a second for video chat. On the left, the narrator role is played

by the Greta Virtual Character, whereas on the right a video stream is used. This setup

has two web cams, which allowed us to film the child from different angles. The video

stream recovered is sent to the pilot view, as well. The video conference setup is done

using multiple communication channels, built with the GStreammer [191] toolkit for

Linux. All the videos recovered are saved on multiple copies, to ensure backup.

An important element present in all the three views is the story in book format.

The images are digitized and synchronised among all the three views. Moreover, the

pilot can use the mouse to point at important aspects of the story.

All the components of OAK are fully customizable, with independent XML based

configuration files for each of them. The actions are translated into BML [106] code by

an action interpreter and forwarded to the required agent.

Using all the data recovered through the experiment, we are able to conduct a brief

statistical analysis based on several interaction features.

4.5 Project results

During the data collection phase, we managed to conduct the experiment on a valid

population of 49 children, with ages varying from 6.4 to 9.3 years old, coming from

2 schools in the Rouen metropolitan area, France. The group selected for this anal-

ysis consists of 20 children (7 girls and 13 boys), which were chosen due to their age

homogeneity and development, providing statistically relevant results, as well.

This analysis is extracted from the Master Report of Bersoult [17], which provides

more details about the methodology and the psychological aspects of the issues. Our

interest in this analysis is to provide a conclusion on the agent design aspect, which leads

to the next generation of conversational agents dealing with children oriented models.

Figure 4.5 provides some quantitative measurements over the number of pauses

(with more than 2 seconds of delay), sentences, words and interactive sentences. All

these measures are summed for the entire population. The pauses, sentences and words
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are the ones actually spoken by the child, while the interactive sentences are triggered

by the psychologist, in video mode or while piloting the avatar, in order to make the

conversation more natural and fluid. They consist in sentences that are taken out of

the story context, such as: “Yes. You are right”, “OK”, “Do you think so ?” or “Do we

continue ?”. The data is represented for both types of narrators: avatar and psychologist

in video conference mode.

1 10 100 1,000 10,000

130

1,496

439

49

117

1,253

417

9 Avatar
Video Conference

Pauses

Words

Sentences

Interactive Sentences

Figure 4.5: A quantitative analysis of the results, for the selected group of children

Except for the number of pauses, there is not statistical relevant difference between

the two modalities (as the report of Bersoult [17] shows), which means that the children

do not perceive an actual difference between the two modalities. The only significant

difference is the number of pauses taken to respond to the questions. This cannot be

linked with an attention deficit, because all the children participating on the experiment

successfully responded to the final survey, which consists in describing some specific

aspects of the story. We believe this could be linked with the style of the narrator, as

the avatar tends to be more monotonous than the psychologist. Nevertheless, this offers

a good feedback to the new system design.

The disfluencies3 ratio is computed in a 100 words window. Figure 4.6 presents

these results. Comparing the results we obtained to the one presented in the Oviatt

study [141], the ratio between the two modalities is lower: 1.29, in comparison to the

2.5 (up to 3) presented by Oviatt. Several hypothesis could be made. First, when the

avatar takes a human-like form, the disfluency ratio increase. Second, because of the

video conference mode, the disfluency ratio is lower than it would be in the presence of

a “real adult”.

Avatar

Video

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

5.95%

7.73%

Figure 4.6: The disfluencies results, for the selected group of children

Based on the short survey conducted at the end of the experiment, we found several

interesting comments regarding our experiments. First, the children were able to detect

several differences in the appearance of the two narrators. Some of them observed the

absence of a microphone and headset on Greta. Others compared the character with
3The disfluencies are markers of irregular speech, pauses and non-lexical vocabulary that would not

be employed in a fluent dialogue
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a toy or a “lady made of modelling paste” (plasticine). Moreover, 55% of the children

detected the slowness in interaction with the character, but none of them were worried

about this. In fact, all of the children adapted very well to the rhythm and appreciated

that this allowed them to speak.

During the communicative error states, we observed an interesting difference in the

interaction modality. The children use face gestures or postures more often to indicate

that something went wrong when talking to the adult in video conference mode. While

discussing with the virtual character, this tendency migrated to verbalisation, rather

than using gestures. Moreover, during the interaction with the avatar, they used shorter

and more concise sentences.

Based on the selected statistical results, we can conclude that children are able to

adapt to the system, and that they enjoy the interaction with it, even if it is not as

natural as with a real narrator. Moreover, due to our avatar interactivity, only very few

children compared it with a cartoon like character.

4.6 Discussion

During the experiment, the children interacted with the virtual character similarly to

how they interacted with a human in video conference mode. This can be explained by

their high ability to adapt to this kind of systems and that they have lower expecta-

tions than the adults. This result sustains our initial hypothesis, that the children are

engaged into the interaction with a virtual character. Therefore, in future, this offers

the possibility to test new interactive models with children, using multiple modalities

and emotions.

Building OAK allowed the psychologists to model the protocol and scenario very

easy. Moreover, the selected results show that the children are able to adapt to the new

environment well, without making any effort. The experiments show several difference in

the interaction modality and a low level of disfluencies when the children are interacting

with the virtual character.

In future, this system could be used to test the disfluency hypothesis in a more com-

plex environment, involving adults, filmed or “in person”, virtual characters or robots.

Currently the platform is generic enough to allow the addition of other actors.

Furthermore, the interaction model recovered can be used to build an Intelligent

Interactive Agent. The scenario and the protocol remain the same, but the agent needs

to perceive the interaction clues (i.e. sentences, pauses, face gestures) and properly

trigger the scenario state. A good Embodied Conversational Agent should be able

to follow the scenario, already modelled, and interpret the user’s feedback (affective,

gesture or semantic) and respond accordingly. All these feedback channels are required

for an interactive system, therefore a platform that allows an easy integration of such

components becomes our next goal.
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CHAPTER 5

AgentSlang: A new platform for rich interactive systems

"It is far better to adapt the technology to the user than

to force the user to adapt to the technology."

– Larry Marine, Founder of Intuitive Design & Research
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5.1. CONTEXT

5.1 Context

In the recent years the information becomes more available and it is constantly growing

in size. Even in the interaction context, the human reactions in front of a computer

are richer, they embrace multiple forms and factors (i.e. visual feedback, emotional,

vocalisations, speech, dialogue), while dealing with multiple information sources. The

primary conclusion given by the ACAMODIA Project[1] is that the Interactive Systems

(IS) should be fast enough to react to all the input, because there is no significant

difference between the reaction of a child in the presence of a computer or another

human.

Dealing with rich interaction, given by multiple sources, in a very fast and reliable

way has become our current challenge. The human-computer interaction problem is

complex [6] and requires work on multiple levels, such as speech and feedback recogni-

tion, natural language processing, dialogue management or speech generation. Each of

these problems has been treated independently, or at most a combination of the two,

but to our knowledge, a system dealing with all of them has not been proposed yet.

The integration problem becomes more complex when a certain genericness is asked.

In Ales et al. [6], we proposed a theoretical flow to solve this problem, but the idea

of an implementation came later. In our initial approach, the flow requires speech

input, which is translated into knowledge for the system and a dialogue manager should

provide an answer to the query. This is synthesised into speech and simulates the

communication.

In the current thesis, we add another level to our initial work represented by the

affective feedback, as it has been described in the previous chapters. Figure 5.1 repre-

sents a description of a generic system architecture, as presented in Ales et al. [6], and

having the Affective Feedback component in addition.

Speech Input

Natural Language 
Understanding

Automatic Speech 
Recognition

Dialogue
Management

Natural Language
Generation

Text To Speech
Generation

Speech Output

Affective
Feedback

Figure 5.1: The general system view having a new layer that deals with affective feedback.

In general, the feedback is another communication channel that intersects some-

times the regular interaction feed. The feedback receives input from any component
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that processes the raw input and offers data to all the components which refine the

results. The system output needs to be adapted to the feedback at any level. The

affective feedback, in particular, deals with multi-modal data: raw speech, transcribed

data, gestures or even dialogue states. The output of such component is the degree of

positivity or negativity present in the content in the case of a valence model, or a more

complex system of labels in other cases, such as Ekman’s six emotion model [55].

Due to the high numbers of connections between the components and the diversity

of the inputs, a high speed architecture with dynamic links between the components is

desired.

5.2 Related Work

An IS, as a complex system, contains multiple critical components. In Figure 5.1, we

formalised all the components dealing with user inputs as Knowledge Extractors, the

Dialogue Manager as an Interaction Manager, the components generating the output

are Behaviour Generators and the ones executing this are the Players. For each one of

these categories, the problem has been approached by multiple research projects. Our

focus in this chapter is on platforms that propose architectures to model the integration

of all these components into a Distributed Interactive System (DIS).

The components that interpret the behaviour, the Players, can be either a simple

Speech Interface, an Embodied Conversational Agent (ECA) or a Robot, for instance.

We focus the presentation of related projects on systems that do not have a strong link

with the interpreters and are generic enough to be used in multiple environments and

scenarios.

Mirage

Thorisson et al. [193] propose a constructionist methodology to build a component

based architecture. This can be adapted to design ECA systems, by modelling reusable

components that can be plugged in an unified architecture. The project aims at building

an agent that is part of a collaborative environment, in a tutoring scenario. The agent

acts as a tutor for presenting the laboratory material by using multiple modalities:

speech, gesture. Moreover, the character is animated using head mounted 3d glasses

and it is able to perceive gestures through a series of wireless sensors and speech.

The platforms aims at identifying existing software that could be reused and inte-

grated into the project. The system is build against a blackboard messaging platform,

Psyclone [38], which allows the integration of different components written in C++ or

Java. The message format is a series of well documented, hard-coded, protocols, that

are distributed across the network on multiple machines in order to obtain real-time

performance. One of the challenges tackled by the project is the integration of multiple

message sources providing similar data into an unified protocol.

This project described a good methodology for building component based architec-

tures. The platform has no source code publicly released, except for the middleware
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software (Psyclone [38]), which is available for research purpose.

GECA

The Generic Embodied Conversational Agent Framework (GECA) [81] aims at building

ECAs that interact with human users in face-to-face conversations, while being able to

recognize verbal and non-verbal input, generate speech, gesture or posture behaviour

and perform basic conversational functions (i.e. utterance turn taking and feedback

detection). All these functions are not domain specific, therefore Hung et al. [81]

present this architecture as a generic platform that could serve as a foundation for

future development.

The platform supports C++ and Java integration through the OpenAIR protocol,

integrated in the latest revision of Psyclone [38]. The messages are sent using several dis-

tributed blackboards. The system proposed various formats for the data messages, such

as standard existing XML formats. Moreover, the authors propose a generic markup

language GECAML [81] which unifies all the features offered by various Automatic

Speech Recogniser and Text to Speech API.

The application domain for this platform include: Dubrovnik (Croatia) city tour

guide agent [83], application for experiencing cross-culture gesture difference is a virtual

environment [82] or tutoring agents for question-answer scenarios [81].

VHMsg

The Virtual Human Messaging (VHMsg) [199] is a library that defines a message pro-

tocol around ActiveMQ, for building Distributed Interactive Systems. It was created at

the University of Southern California’s Institute for Creative Technologies. This project

is part of the Virtual Human Toolkit1.

The platform focuses on providing an easy solution for sending and receiving mes-

sages within the system. It provides support for various programming languages, such

as : C/C++, C#, Java and TCL. Moreover, this library acts as a generic middleware

solution and does not provide any support for binary data formats, XML or custom ob-

jects. The system management functions are limited to simple custom text messages.

Companions

Companions [31, 89] is an Embodied Conversation Agent (ECA), developed as an Eu-

ropean Project by a consortium of universities and private companies. This project

develops the idea of a companion [18] agent, which is engaged into a long term inter-

action process to build an empathic [150] relation with a human. The companion, as

a role, is both a confident and a partner in daily interaction. This idea has been ex-

ploited by several groups in order to provide companions for medical purpose [189] or

hospitalised children [167].

1https://confluence.ict.usc.edu/display/VHTK
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Building empathy and trust between a human and a computer is a difficult task

[150]. Therefore, the Companions ECA is build around the scenario “How was your

day ?”, which acts both as a general interaction theme, with an open dialogue. The

human is expected to provide any kind of informations regarding daily activities, while

the agent acts as a listener and provides feedback and advices, when necessary.

From the technical perspective, the system uses several proprietary platforms, de-

veloped by the industrial partners: a middleware platform, Inamode, developed by

Telefónica I+D2; an ASR and TTS engine, developed by Loquendo3; and a Virtual

Character, developed by As An Angel4. Moreover, this system has two versions: one

for English speakers [31] and a second for Slavic languages, with a study case for Czech

language [89].

Unfortunately, due to the use of proprietary technology, the platform does not offer

many research or technical details, such as validation, licence or performance aspects.

Moreover, the ECA supports sessions of only 15 minutes long, due to some technical

restrictions. Finally, the components of this platform and the algorithms produced by

this project are not generic enough to be used in other environments.

Semaine

Semaine [175] is a Sensitive Artificial Listener (SAL), built around the idea of emotional

interaction. It has been developed as European Project by a consortium of six laborato-

ries and universities. The project is focused on the the idea of a Virtual Character that

perceives human emotions through a multi-modal setup and replies to them accordingly.

The response is not always a direct reaction to the affect perceived as a certain level of

planning is done. Moreover, several virtual characters with different personalities are

proposed, each having a different reactive model to the perceived emotion.

The affective models are proposed by a team of psychologists, which involves the

proper tracing of human emotions [42] or the influence of emotions in every day in-

teraction [41]. This collaboration lead to a multi-modal interaction corpus, collected

through multiple sessions with dialogues between two humans playing different roles,

and human-computer with the proposed system.

Originally, the project started as a collaboration between multiple partners through

the HUMAINE [86] network, which lead to a proposition of a Emotion Markup Language

standard (EmotionML [177]), developed to cover all the psychological and technical

aspects of the problem. The Semaine consortium proposed another API standard,

formatted as a markup language: SemaineML [175].

The system introduced the idea of component based, distributed interactive sys-

tem, where each algorithm or component could act independently. The platform inte-

grates various existing components into a distributed system that communicates over

ActiveMQ [182] message queues. The affect detection part is a fusion of low level speech

features extracted using OpenSMILE [60] and face gestures classified using iBug [183].

2http://www.tid.es/en/
3http://www.loquendo.com/en/
4On May 2013 the website of the company does not work any more: http://www.asanangel.com/
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The behaviour of the agent is managed by two components developed by the team,

which is send to the Text to Speech synthesiser: MaryTTS [144]. The speech is trans-

mitted to a speech and gesture synthesis component, which converts the data into Greta

BML code [154].

Due to the genericness of the platform, all the components are available individually.

Moreover, except several components,the project is available for the research community

as an Open Source project, under LGPL licence.

Others

The MULTIPLATFORM project [77] served as a component integration platform for

various well known projects: Verbmobil [202] and Smartkom [203]. Herzog et al. [77]

propose a semantic separation of the system functionalities into: recognition, analysis,

action generation and synthesis. In order to facilitate the integration of various compo-

nents, a new middleware layer has been added on top of the PVM platform [63], which

introduced a publish-subscribe architecture. The project is not actively maintained any

more and the source code of the platform is not available.

In the context of smart space applications, CHILix [46] proposes a platform where

perceptual components used by audiovisual processing and multi-modal inputs are

fused. The system uses a middleware approach to exchange hand crafted XML messages

across multiple parts of the system. Moreover, the platform uses the freely available

NIST[132] platform to collect sensors data across the space. The core idea of the project,

the fusion of multiple sensor data seems appropriate for Ambient Intelligence applica-

tions, but the domain-specific messages and components are not generic enough to be

reused in other scenarios. Moreover, the framework does not appear to be publicly

available.

The OpenInterface Platform [110] aims at creating a reusable multi-modal envi-

ronment for interactive systems. The components are described in Component Interface

Description Language (CIDL), which has an XML-based syntax to describe each com-

ponent interface. The behaviour of these components is described in Java, C++, C# or

Matlab. All these layers are connected to a custom OI Kernel, used to route the local

messages, whereas for remote connections, TCP and RCP interfaces are provided. The

platform is available for research, but the latest release 0.4.0 (December 2009) is still in

“alpha” state, without any other updates.

Summary

Table 5.1 presents a comparison of key features across main state of art systems. The

core functions of our approach are the Dialogue Management and Affect Oriented design,

based on specific components that support this claim. Currently, only Semaine and

Companions projects use Affect Oriented features. The Dialogue Management is offered

by Companions, Mirage and GECA. VHMsg is more a middleware library for building

interactive agents, with no specific system implementations.
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Semaine Companions Mirage GECA VHMsg

Middleware
Platform

ActiveMQ Inamode Psyclone OpenAir ActiveMQ

Integration
Approach

pub/sub plain socket blackboard blackboard pub/sub

Operating
Systems

LMW1 Unknown LMW1 Unknown LMW1

Data
Interface

multiple2 XML string XML string

System
Management

Yes (No) No No No

System
Events

No (No) No No No

Actively
Maintained

Yes Unknown (No) (Yes) (Yes)

Platform
Licence

LGPL Proprietary Unknown Unknown LGPL

Dialogue
Management

No Yes (Yes) Yes No

Affect
Oriented

Yes Yes No No No

1Linux, Mac, Windows

2String, XML and binary data converted to string

Table 5.1: A comparison of key features of existing State of Art Interactive Systems

Semaine is a Sensitive Artificial Listener, where the sensitive part refers to the

affect recognition and simulation aspect. The listening key word refers to the ability

to perceive certain emotions, but due to the lack of dialogue/interaction management,

the agent is not able to reply with semantically adequate behaviour to the human

companion.

Companions offers both dialogue management and affective interaction, but with

very few details about this aspect. In fact, due to the proprietary licence of the system,

no component or source code has been publicly released. This is making very difficult

an evaluation of the quality of these features. Moreover, the system is centred around

the “How was your day ?” scenario, which restricts even more the field of application.

Mirage is used for an augmented reality application, where the agent is participating

to the environment. The platform allows the collection of multiple perception layers

(i.e. gestures, speech), with the possibility to fusion. The dialogue capabilities of the

system are very basic, by providing some reactive model linked with the perception.

GECA is a generic platform for ECA Applications. It does not offer support for

affect oriented design, but is has basic dialogue models support. It uses a distributed

approach in order to integrate different legacy algorithms in one unified platform.

Both Mirage and GECA use different versions of Psyclone (OpenAir is the previous

version of Psyclone), which are not actively maintained. This makes very difficult the

support of the projects, due to the use of unsupported middleware. On the system
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management aspect, currently only Semaine provides tools for such a purpose, whereas

the real-time system messages, that provide informations about the state and status of

all the components, are not supported by any of the presented platforms.

5.3 A new platform for Distributed Interactive Systems:

MyBlock

5.3.1 The principles of a Distributed Interactive System

Schröder [176], proposed a set principles that serve as a guideline for any DIS, and was

the foundation of the SEMAINE API [175]:

1. Distributed component oriented design, which assumes that rather than

building a monolithic system, which takes one instance of the data and combine

multiple levels of processing in a single instance, a multi-component system is more

useful because of the possibility to integrate existing components and convert data

according to each component needs.

2. Component reusability, which makes the hypothesis that every existing algo-

rithm or component, solving a particular problem needs to be easily integrated

into the new architecture and all the components integrated need to be reusable

as well.

3. Scalability is one of the most important features of a new platform since it would

be desired to deal with large amounts of data and components

4. Open Source Base Code offers the possibility for all the community to integrate

and benchmark their own algorithms on a common platform.

Our model introduces three new principles to this guideline:

5. Data oriented design refers to the system ability to process certain types of

data, rather than concentrating on the data source. Our principle says that if a

certain system, or more specific a component, knows how to process a specific type

of data, it is mandatory to process it, and the source of that data is not important,

as all the components in the processing pipe would make a "best effort" approach

to transform the data.

6. Fast, reliable components and total distribution. Since the ACAMODIA

experiments, we are expecting large quantities of data passing through our system,

so speed and reliability becomes a critical requirement. Moreover, to eliminate

any unneeded transfer between components, a broker-less architecture is desired.

7. Dynamic component linking, which refers to the ability of the system to build

processing pipes at any point (runtime or deployment), without affecting the flow.
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In order to incorporate all these principles in our work, and more specific the Com-

ponent reusability requirement, we decided to “separate” the project into two distinct

parts: MyBlock, which deals with platform issues, data and component distribution;

and AgentSlang which is an instance of MyBlock: a repository of components build

around MyBlock architecture.

Licence

Except the SEMAINE Project [175], all the other relevant project dealing with simi-

lar issues have licensing problems, by either being too restrictive or not considering a

licensing system at all.

In order to assure the reusability principle, all the components of the MyBlock

platform are licensed under The GNU Lesser General Public License v3(LGPL) and

the French CEA CNRS INRIA Logiciel Libre (CECILL-C). This combination allows

unlimited access to the project, with the obligation to publish under the same license

any modification made on the project (LGPL) and any academic or commercial usage

should be cited (CeCILL-C).

The licensing process for AgentSlang is more complicated, due to the possibility

to integrate proprietary software or other licenses into the project. The final decision

is that all the components published under the AgentSlang project should have the

same license as MyBlock, until stated otherwise, for a particular component. The

possibility to integrate multiple licenses is allowed due to the distributed architecture

and the component independence, which can be considered in terms of free software,

soft-binding.

5.3.2 Description of the platform

The need for a fast and reliable DIS lead to the design of the MyBlock platform. It

incorporates all the strong features of SEMAINE, such as component distribution, data

independence and component integration; but provides extra features such as speed,

robustness, dynamic component linking, data-oriented design.

MyBlock is designed to be a middleware for distributed pipeline processing. It had

to be small, flexible and fast enough to support the development of a rich platform,

capable of exchanging information in real-time. The main platform has a three level

separation, like in most of the modern architectures, which allows an easy management

and understanding of the components. Moreover, each level is responsible of a different

function. Figure 5.2 presents the three levels of MyBlock, separated by their function.

Each level has a different set of keywords associated to facilitate the understanding of

the concepts associated with that level.

Components

A component is an atomic structure for the MyBlock platform. The component pro-

cesses a given set of data types and forward the output to the next component in the
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Service Level *

Request / Reply
Named service

Component Level

Publish / Subscribe
Data types
Internal Channels / Topics

Architecture Level Deployment Level *

Profile
Machine
Platforms

External Channels
Config
Subscription / Publishing

Figure 5.2: The MyBlock functional separation is done in three different levels, each having
assigned a different set of responsibilities. Each level has a set of key words assigned, which
describe the functions of that level. The levels marked with * are more linked to advanced
concepts and would not make the object of a simple integration task.

chain. The internal flow of a component can have two different aspects: either it is a

reactive output to the input, or an active component, in which case it can produce out-

put based on the internal states, without having an input. A special case of components

consists in elements which only consume (Sink) or produce (Source), without having a

mixed function. In theory, these two types never exist, because every component has

a mixed role. For a more practical approach, we consider sources to be the elements

which only provide data to the MyBlock platform, even if the component is just a proxy

for another source (a microphone), and sinks to be elements that just consume, even

if their function requires redirecting the information to another sink (a set of speakers,

for instance).

At this level, the data types are an important aspect. The data exchanged between

components need to be compatible between linked elements. A component formally

defines the preconditions and postconditions in terms of data types, which allows the

linking with the other components to form complex processing pipes. The communica-

tion protocol between two components is a simple publish-subscribe architecture, which

allows an easy exchange when data is available.

To allow the binding of different elements into a processing pipeline, the components

define a set of internal channels, to which it publishes the data. These channels are

identifiers for each function fulfilled by the component and could correspond to one

or multiple published data types. In general, it is a good practice to publish only

compatible data types on the same channel. In order to preserve the terminology with

other distributed message processing systems, these channels are named topics.
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Services

At the first level of the MyBlock architecture, the same as the component, we define

another very important concept, with a different functionality: the service. Its main

function is to respond to requests that can be triggered by any component or service.

The communication protocol used for service is a synchronous request-reply, which

allows a simplified logic for the knowledge query. When making a request, an element

instantiates a client, which makes the request to the selected service. Each service has

an unique identifier, given by its function, which allows a simple localisation.

Writing a service is considered an advanced topic mainly because most of the issues

on IS can be resolved by a component pipeline.

Architecture

On the architecture level, the actual pipeline is constructed, by passing the configuration

parameters to the components and services and building the dynamic links between all

the elements. The important features of this level are highlighted by the ability to

change dynamically the structure of the processing pipeline, without changing the logic

of the components. If the data exchanged between several elements is compatible,

the order of processing is not important. Moreover, in comparison with other platforms

which use the processing pipeline paradigm, MyBlock does not need special components

for data multiplication or joining. This is automatically ensured by the construction of

the platform.

Deployment

The deployment level is essential for the production-ready environments. While build-

ing and testing the platform, all the deployment aspects of the system can be ignored,

but at the end, migrating from a development stage to production should be as direct as

possible. The first property of this level is that all the elements (services or components)

can be grouped into profiles. This corresponds to the ability to group components with

similar functionality under the same profile, which makes management and understand-

ing easier.

One or multiple profiles can run on the same physical machine. The only real

restriction is that a profile group cannot be split across multiple machines. All the

profiles found on all the available machines are grouped into one large project setup,

which gives a global view over the structure of the system.

The deployment level corresponds to the Scalability (item 3, page 104) and Dy-

namic Component Linking (item 7, page 104) design principles presented in the

previous section. In general, the components do not need to be aware of deployment

architecture and all the issues concerning these principles should be resolved by the

platform.

107



5.3. A NEW PLATFORM FOR DISTRIBUTED INTERACTIVE . . .

5.3.3 Distributed aspects of MyBlock

Based on the platform design principles enumerated in previous section (page 104),

having a platform that is fast, reliable and fully distributed becomes a critical point

in our design. This requires a middleware platform to manage all the communication

between the components. This platform needs to be able to deal with distributed

environments, be actively maintained and model a simple communication protocol.

Following these requirements, several candidates can be considered. Table 5.1 highlights

several candidates: ActiveMQ, Inamode, Psyclone and OpenAir (Psyclone). Inamode

is a closed source proprietary platform which cannot be tested, therefore the benchmark

needs to be conducted between ActiveMQ, Psyclone and our proposition.

MyBlocks has a level of abstraction for the transport layer, that we implemented

using ZeroMQ [79]. ZeroMQ (also spelled ∅MQ) is not a typical middleware platform, as

other projects use, but an intelligent transport layer which unifies different networking

protocols (TCP, UDP) among with in-process and inter-process communication. More-

over, due to the reimplementation of the classical socket api, the ZeroMQ library is

proved to be more efficient in massive distributed environments [79]. Due to the limited

support of in-process and inter-process protocols and the recommendation of ZeroMQ

authors to avoid the usage of UDP as much as possible, our choice was to use the TCP

protocol.

ZeroMQ: basic principles

One of the advantages of using ZeroMQ as transport layer is that it already implements

several communication patterns. These pattern are linked with the communication

topology and the behaviour of the sockets. The three main topological configurations

offered by this library are:

• Request-reply, allows the connection of multiple clients to several servers in a

query-response setup. It is useful in a remote procedure call or query instantiation.

• Publish-subscribe, allows an easy data distribution from a set of publishers to

a group of subscribers

• Pipeline, which connects multiple elements into a multiple steps setup. This can

be used for parallel task distribution

Due to the flexibility offered by the publish-subscribe pattern and the protocol

support, our choice was to use this rather than the pipeline protocol. For the services

and clients architecture, we decided to use the request-reply pattern, since it is a classical

remote procedure call.

Benchmark

Following the previous list of candidates for middleware platforms, we decided to per-

form a benchmark test between ActiveMQ [182], one of the most representative systems
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on the Message Queue (MQ) implementation, and ZeroMQ. The other candidate for

this test would be Psyclone [38], one of the very popular white-board style message sys-

tems, but Schröder [176] already conducted a benchmark and concluded that ActiveMQ

has a huge advantage over Psyclone.

The machine used for this test is a I7 Intel machine, at 1.6 GHz per core and 3.9

Gb of RAM. The operating system used for the test is an Ubuntu 12.04 Linux, with

Oracle Java 1.7.

Table 5.2 presents the running times, in milliseconds, for ActiveMQ and ZeroMQ and

table 5.3 shows the message throughput. The setup for these times is to send a series of

random messages, for a given size, from one component to another. We choose to send

random sequences in order to prevent the caching speed of ActiveMQ, which applies a

set of heuristics in case the same message is sent over the network. Moreover, in order

to prevent local traffic peaks, we sent 100 messages and presented only the average time.

For the message throughput, we represented the number of messages that pass between

the two components in one second. Figure 5.3 represents this measure, side-by-side, on

a logarithmic scale.

System
Message Size

10 100 1,000 10,000 100,000 1,000,000

ActiveMQ 0.25 0.21 0.17 0.40 3.41 28.40

ZeroMQ 0.02 0.12 0.06 0.31 1.79 15.12

Table 5.2: A running time comparison between ActiveMQ and ZeroMQ platforms. The time
presented is expressed in milliseconds and the message size represents the length of the sequence
sent over the platform

System
Message Size

10 100 1,000 10,000 100,000 1,000,000

ActiveMQ 4,047 4,792 5,714 2,479 292 35

ZeroMQ 50,000 8,333 16,666 3,225 558 66

Table 5.3: A message throughput comparison between ActiveMQ and ZeroMQ platforms. The
throughput presented is expressed in number of message per second and the message size
represents the length of the sequence sent over the platform

The conclusion of this experiment is that currently ZeroMQ is a much better solu-

tion for message exchange, mainly due to the fully distributed state, the possibility to

send binary data and the absence of a broker, which slows down a distributed pipeline

architecture.

Distributed processing pipes

The alternative to a distributed pipeline is a monolithic algorithm, with all the procedure

calls embedded into a large system. Such a proposition has the speed advantage, since
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Figure 5.3: The performance comparison for ZeroMQ and ActiveMQ, for message throughput
representation. The representation is done on a logarithmic scale

all the components pass just a data reference between them, rather than wrapping the

data into different formats. The downside of this approach is the maintenance of this

system, since it easily becomes almost impossible to comply every algorithm to the exact

same data structure and transform any new functionality into an internal procedure call.

Moreover, in the early stages of prototype creation, dealing with unstable procedures

could make the whole testing process more difficult.

The main advantages of a distributed processing pipeline for IS are the ease of

integration for new components, easy deployment and clear separation of concepts. In

such of an environment, it is easier to establish a common protocol for data, which

does not have to have the same strict format to be exchanged between components.

In a distributed environment, each component is associated with a functionality and a

couple of these elements could correspond to a sub-procedure call. All these concepts

are fully separated and maintaining them is easy since the development is done for a

component at the time.

In a production environment, for a monolithic algorithm, changing the setup or the

order of procedure calls would mean, probably, a recompilation of the software. In

distributed environments, this can be realised only by changing the architecture of the

processing pipelines, which is much more feasible than recompiling.

5.3.4 Data oriented design

In a distributed pipeline system, such as MyBlock, the data representation becomes

critical. Even if the formats do not have to be strictly identical between linked compo-

nents, but at least the compatibility has to be ensured. There are two main directions

in this area:

• Design data to have a small transfer size and memory footprint

• Generic data representation, written in standard formats (i.e. JSON or XML)

The ad-hoc feature representation is very popular in early system integration, but

since no specification is used, the data becomes very difficult to be maintained. An al-

ternative to this process is represented by Google Protocol Buffers [67], which formalises

all the data messages into a strict syntax which is translated into messages and data

types in various programming languages. This approach seems to be secure and flexible

110



Detection and Integration of Affective Feedback into Distributed . . . Ovidiu Şerban

enough for the usual data exchange between services, but it is very strict with data

type inheritance, a concept supported by all the major Object Oriented programming

languages.

The generic data formats have been formalised in the recent years, due to the increase

in popularity of Semantic Web technologies. Due to increasing popularity of establishing

strict interchangeable formats which a web service would “understand”, several formats

have been proposed. World Wide Web Consortium (W3C) is the authority that deals

with current and future web standards, including the current web service data formats

for the Semantic Web. Table 5.4 presents the current situation of various data type

standards related to the conversational agent problem.

Standard Functionality W3 Status

VoiceML [87] Automatic Speech Recognition W3C Recommendation

SSML [26] Text-To-Speech W3C Recommendation

EMMA [97] Multi-modal Annotation W3C Recommendation

EmotionML [177] Emotion Annotation W3C Incubator Report

BML [106] Behaviour Realisation None - Draft proposition

FML [78] Functional Behaviour Annotation N/A

SemaineML [175] Semaine API Formats N/A

Table 5.4: The data standards for various conversational agents related functionalities and their
W3C recommendation status

Whereas the standardisation of several data formats is an ongoing process, this

approach seems to be more suitable for large scale web services, such as the Semantic

Web, rather than using them for small scale, fast conversational agents. Google Protocol

Buffers [67] presents a comparison between their current serialisation format and the

XML parsing and conclude that their format is 10 to 100 times faster than xml.

MyBlock data encapsulation

Our approach defines another data representation level, which is Object-Oriented, al-

lowing us to design object hierarchies corresponding to our main data types. The

objects are extendible and independent from the data serialisation level. This allows

us to change the serialisation level in the future, when either Google Protocol Buffers

becomes a standard or W3C standards become stable and recommended.

MyBlock formalises only one root class, from which all the data transferred through

the platform has to be implemented. This is similar to the Object Class hierarchy in

most of the programming language. The second level of this hierarchy is represented

by Identifiable Data, which defines a unique identifier for any encapsulated structure.

This approach is useful in data synchronisation or to join data from different sources.

Any simple data exchanged inside the system, such as the text transcription received

from the input is String Data. If a second level of annotation is added, the structure
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is transformed into an Annotated data, which can attach multiple generic annotation

levels to the data. For components dealing with affective information detection, a

Valence Data specification has been created.

In order to prevent components from receiving or publishing invalid data, MyBlock

has a “safety” mechanism, which checks all the data transferred between the components.

This is done according to the data type policies defined on the component reception or

publication channels.

All the data structures presented in Figure 5.4 have corresponding Java Objects

implementations. This approach leads to a natural development of components, while

the data formats remain open. Moreover, by using this approach, the memory footprint

remains small due to the usage of primitives for any places where strings are not required.

The usage of objects, rather than raw xml does not exclude the usage of web standards,

such as BML, but it terms of optimality it is preferred to keep the memory footprint as

low as possible.

Identifiable Data

String Data TextAnnotation Valence Data

Generic Data

Figure 5.4: The simplified diagram of MyBlock data objects

5.3.5 Components, Services and Schedulers

In the distributed architecture presented so far, most of the components we described

are just processing data. A second type of behaviour is to produce output, based on

their internal states. This flow can be linked with a timeout, which triggers the desired

behaviour. In order to provide these timeouts, synchronised to all the components, a

special element was created: the schedule manager (or scheduler). Even if the compo-

nent is not active, it has to subscribe to a schedule manager. The scheduler sends a

heartbeat when a certain timeout is achieved, and that is broadcasted to every compo-

nent subscribing to it. A component may choose to ignore this heartbeat. In MyBlock,

the project may contain one or more schedulers, depending on the interpretation of the

heartbeats.

The components encapsulate behaviour linked to a phase in the processing pipeline.

A component processes a set of data types and output a list of results. MyBlock offers a

series of abstract components, which, divided by their functionality, can be summarized

by the following list:

• Source: represents a component which only publishes data to the system. System

topics, such as heartbeat or system messages are not considered to be represen-
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tative to the functionality of a component, so, even if a component receives data

from these feeds, it is still considered as a source.

• Sink: describes the elements which only receive data. In theory, none of the

system components can be a real sink, because every component is allowed to

send system feedback. We consider to be sinks, all the components that only

process data, without publishing any results.

• Mixed Component: represents a component that has the role of a Sink and the

source, at the same time.

• Living Component: describes elements that react to the heartbeats published

by the schedulers. This is the only functional difference between this element and

a Mixed Component. In practice, for feedback generation, a Living Component

could generate a message in case of a long inactivity

Each component can have assigned a set of properties, which acts as startup param-

eters. These are given at configuration time. In order to increase the readability of the

source code and to add a second level of functional description to all the components,

a special annotation has been created which describes the internal topics needed to

configure a component and the properties used by this element. Listing 5.1 presents

an example of this annotation with parameters. This annotation gives a new level of

information about the component, but also provides a dynamic to reflect the component

settings for instantiation.

@ConfigureParams(configureParams = "component.param",

outputChannels = "component.data")

Listing 5.1: The annotation example for a component defines the configure parameters and the
output channels

A service, in MyBlock, acts as a knowledge manager. The two sides of this design,

with a client and a service, is flexible enough to be integrated in any processing pipeline.

The client, in order to increase the speed, offers a priority cache ordered by the time-

stamp of the request. The whole generic behaviour of the service is encapsulated into a

single entity, the AbstractService class, which deals with all the request and low level

communication. A new service has to implement just a couple of new methods dealing

only with the functional process, rather than querying over raw data.

So far, only two system services are defined into MyBlocks, and one experimental

knowledge manager.

• Computer Name Service: It deals with all the computer name resolving issues.

Since there are multiple ways to define a host or a physical device, we unified

everything into a single service. The machine names are the standard physical

identifier over MyBlock, and their IP or hostnames are resolved by this service.

The actual calls to this service pass only once, when the connection between two

components is made
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• Topic Service: The topics in MyBlock have two forms: one is the raw, string

format, which is used at the configuration time and it is human-readable, and the

second, which is encoded into a numeric identifier, making it short and easier to

work with. The Topic Service resolves this encoding and maintains a database of

all the encodings at the running time.

The experimental knowledge manager offers simple synonym and definition relations

for certain words. It is still under construction and at the end, it would have the role

of a knowledge management database.

5.3.6 Example

In order to highlight the capabilities of the system, we compiled a simple example, one

Source component and one Sink, with a single message, broadcasted at every heartbeat

received from the Scheduler. The scheduler is configured to publish a heartbeat every

1000 milliseconds, which triggers the output of the publisher. The sink uses the Debug

API and component, and publishes message on the debug topic.

Listing 5.2 presents the Java code for the Source component, which publishes a

String Data on the "test1" internal topic (line 10). The act method is called every time

a heartbeat is receive, and the Test1 component publishes the "Hello-t1: i" message.

public class Test1 extends SourceComponent {

private int i;

public Test1(String port , ComponentConfig config) {

super(port , config );

}

protected void setupComponent(ComponentConfig config) {

i = 0;

}

public void definePublishedData () {

addOutboundTypeChecker("test1", StringData.class);

}

public boolean act() {

publishData("test1", new StringData("Hello -t1:"+(i++)));

return true;

}

}

Listing 5.2: Test1.java: The code for the functionality of the Source Component

Listing 5.3 presents the Java code for the Sink component, which receives a String-

Data (line 11). The act method does not have any functionality in this scenario and

it returns a false, because the act does not execute any action. When StringData is

received, the handleData method is called, which uses the Debug API to publish an

inform to the Debug Component.

The listing 5.4 describes a simple MyBlock project, which runs the current Source

and Sink.

1. For each machine configured on the system, at least one profile has to be created.

In this case, the chosen hostnames are machine1 and machine2. The profile names
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public class Test2 extends SinkComponent {

public Test2(String port , ComponentConfig config) {

super(port , config );

}

protected void setupComponent(ComponentConfig config) {

}

public boolean act() {

return false;

}

public void defineReceivedData () {

addInboundTypeChecker(StringData.class);

}

public void handleData(GenericData data) {

Logger.log(this , Logger.INFORM , data.toString ());

}

}

Listing 5.3: Test2.java: The functionality for the Sink Component

are profile1 and profile2. For example, the machine1 name is resolved as host1,

by the Computer Name Service (Listing 5.5)

2. A Scheduler is defined on the port 1222. This sends a heartbeat every 1000

milliseconds.

3. The two system services are declared: CNService (Computer Name Service) and

TopicService. Each one has a different port assigned and a configuration file, if

necessary. The Listing 5.5 shows how this configuration is made for the CNService.

4. In order to have a proper connection to the configured services, two corresponding

clients are configured by assigning a connection string for each service: a machine

name and a port, for each service

5. LogComponent is the one responsible for the debug API. As it is a regular com-

ponent, it has a port assigned, a scheduler, and two subscribe channels for the

existing components

6. Test1 and Test2 components are configured to communicate in a standard

pipeline: Test1 publishes an external channel called "StringData.test1" and Test2

subscribes to this channel. As multiple components can publish channels with

the same name, these are uniquely identified only by their full name: <channel

name> @ <machine name>:<port>.

7. Test1 component is deployed on machine1, under the profile1, whereas Test2 uses

machine2, profile2

The same components can be reused in other projects, as long they respect the same

data formats. This approach provides a high code reusability and forces the creation of

certain data formats, mandatory for proper exchange between components. Once these

standards are created, any two compatible components can be coupled, decoupled or

moved to another machine.
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<project>

2 <profile name="profile1" hostname="machine1">

<scheduler>

4 <port>1222</port>

<timeout>1000</timeout>

6 </scheduler>

<services>

8 <service name="org.ib.service.cns.CNService">

<port>1221</port>

10 <config>"cnsService.xml"</config>

</service>

12 <service name="org.ib.service.topic.TopicService">

<port>1220</port>

14 </service>

</services>

16 <clients>

<client name="org.ib.service.cns.CNClient">

18 <host >127.0.0.1 < /host>

<port>1221</port>

20 </client>

<client name="org.ib.service.topic.TopicClient">

22 <host>"machine1"</host>

<port>1220</port>

24 </client>

</clients>

26 <components>

<component name="org.ib.logger.LogComponent">

28 <port>1233</port>

<scheduler>"machine1:1222"</scheduler>

30 <subscribe>"org.ib.bricks.Test1.debug@machine1:1234"</subscribe>

<subscribe>"org.ib.bricks.Test2.debug@machine1:1235"</subscribe>

32 </component>

<component name="org.ib.bricks.Test1">

34 <port>1234</port>

<scheduler>"machine1:1222"</scheduler>

36 <publish>"StringData.Test1@test1"</publish>

</component>

38 </components>

</profile>

40 <profile name="profile2" hostname="machine2">

<component name="org.ib.bricks.Test2">

42 <port>1235</port>

<scheduler>"machine1:1222"</scheduler>

44 <subscribe>"StringData.Test1@machine1:1234"</subscribe>

</component>

46 </components>

</profile>

48 </project>

Listing 5.4: The configuration file for a simple MyBlock project

<dns>

2 <machine>machine1 @ host1</machine>

<machine>machine2 @ host2</machine>

4 </dns>

Listing 5.5: cnsService.xml: The configuration file for the Computer Name Service having

defined two different machines

5.3.7 Performance

In a previous section, we benchmarked the performance of the middleware used in other

major DIS. A second benchmark is conducted, in order to test the performance of the
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platforms built over this infrastructure. The setup of this experiment is identical to the

one used for the middleware benchmark. The machine used for the test is a I7 Intel

machine, at 1.6 GHz per core and 3.9 Gb of RAM. The operating system used for the

test is on Ubuntu 12.04 Linux, with Oracle Java 1.7.

Table 5.5 presents the running times, in milliseconds, for SEMAINE and MyBlock.

Table 5.6 shows the message throughput. The setup for these times is to send a series of

random messages, for a given size, from one component to another. We choose to send

random sequences in order to prevent the caching speed of ActiveMQ, the underlying

middleware for SEMAINE Project, which applies a set of heuristics when the same

message is sent over the network. Moreover, in order to prevent local traffic peaks, we

sent 100 messages and presented only the average time.

System
Message Size

10 100 1,000 10,000 100,000 1,000,000

Semaine 0.38 0.38 0.36 0.62 3.35 24.72

MyBlock (ASF)1 0.53 0.51 0.54 0.68 2.85 19.28

MyBlock (Simple)2 0.33 0.31 0.31 0.55 2.88 18.79

1Automatic System Feedback (ASF) sends another message to inform the platform that
the previous message has been processed successfully

2In this scenario the Automatic System Feedback has been disabled

Table 5.5: A running time comparison between SEMAINE and MyBlock. The time presented
is expressed in milliseconds and the message size represents the length of the sequence sent over
the platform

System
Message Size

10 100 1,000 10,000 100,000 1,000,000

Semaine 2,608 2,649 2,747 1,625 298 40

MyBlock (ASF)1 1,872 1,977 1,866 1,472 351 51

MyBlock (Simple)2 3,064 3,275 3,178 1,834 347 53

1Automatic System Feedback (ASF) sends another message to inform the platform that
the previous message has been processed successfully

2In this scenario the Automatic System Feedback has been disabled

Table 5.6: A message throughput comparison between SEMAINE and MyBlock. The through-
put presented is expressed in number of message per second and the message size represents
the length of the sequence sent over the platform

For the message throughput, we represented the number of messages that pass be-

tween the two components in one second. Figure 5.5 represents this measure, side-by-

side, on a logarithmic scale.

MyBlock is presented in two versions: with Automatic System Feedback (ASF) and

non-ASF. This mechanism enables MyBlock to send a feedback message each time an

action is successfully executed. This is executed in the case of sending and receiving
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Figure 5.5: The performance comparison for SEMAINE and MyBlock, for message throughput
representation. The representation is done on a logarithmic scale

a message. SEMAINE does not provide a similar mechanism, therefore, in order to

achieve a fair comparison of the two systems, this feedback has been disabled.

The conclusion of this experiment is that currently MyBlock is faster than SE-

MAINE, when having the ASF disabled. For messages longer than 10,000 characters,

the ASF does not increase the sending time. Since MyBlock targets a large spectrum of

data types, both scenarios can be used in practical situations. The choice of a platform

depends on the application. To achieve the best speed while sending data, MyBlock

simple (non-ASF) is a good choice. To guarantee that a message has been successfully

processed before sending the next one, MyBlock ASF is currently the only choice. In

conclusion, the two versions of MyBlock are better that the current implementation of

SEMAINE and the choice of a version depends on the scenario.

The MyBlock platform is just a component based architecture that allows fast and

reliable data exchange between its elements. In order to transform this into a Dis-

tributed Interactive System, several elements with functionalities specific to interac-

tive systems need to be constructed. Several functions (Natural Language Understand-

ing, Dialogue Management and Affective Feedback, presented in Figure 5.1) can be

implemented using a unified language, based on our extension over regular expressions:

Syn!bad .

5.4 Syn!bad

Syn!bad is an extended regular expression language, for usage mainly in Natural Lan-

guage Processing (NLP) applications. It uses the some extended POSIX Regular Ex-

pression [7] structures among others, more specific to NLP domain. As presented in the

previous chapters, the learning phase for the detection algorithms require a feature ex-

traction method. The knowledge extraction methods, involved in the Natural Language

Understanding Process, use similar techniques to detect key concepts to be used in the

Dialogue Management process. We propose this language to simplify the construction

of these patterns.

The name, Syn!bad (also written: Synnbad, with double nn, instead of n!) is an

acronym of Synonyms [are] not bad. This suggests that the main concepts of Syn!bad

118



Detection and Integration of Affective Feedback into Distributed . . . Ovidiu Şerban

are centred among synonyms processing, using different dictionaries.

Synonyms are independent structures, grouped in different sets, by their meaning.

The most common grouping currently known is the WordNet synsets [123], which consist

in grouping different words according to their semantics and part of speech. Each synset

has a unique id, which permits an easy retrieval.

Syn!bad is embedded into a MyBlock component and is also available as a component

for the AgentSlang platform. Nevertheless Syn!bad it is an independent language which

can be implemented and distributed on its own. We present the language in the scope

of basic knowledge extraction for IS, but this library can be extended to document

classification, summarisation, topic extraction, etc.

In dialogue management, knowledge extraction or affect detection, having a set of

patterns to extract the information simplifies the complexity of any system. Moreover,

it gives a tool set flexible enough to process any data. Appendix A provides a formal

view over the language, by presenting the BNF Grammar definition of Syn!bad .

5.4.1 Context

In IS, the knowledge extraction process is usually slowed down by the complexity of the

rules describing a certain concept. Using regular expressions is an alternative, but in

certain situations, composing rules for all the cases is impossible. Another approach is to

group certain structures while making them more generic. For instance, instead of using

a regular expression for matching the following sentence: Ovidiu do you have water,

one could use <name> do you <verb> <object>. By using regular expressions, the

variable structures are already supported by certain implementations.

The problem becomes more difficult when adding restrictions to the matched vari-

ables, especially in the case of <verb> and <object>. To our knowledge, the syntax of

matching only variable structures while having a certain part of speech is not supported

by any regular expression implementation.

A more complex situation is given by placing a synonymic relation restriction on the

matched item. In our previous example, we would like to extract only the objects being

synonyms of the word water. The synonyms usually introduce a certain fuzziness into

a decision, since not all the meanings of a polysemantic word match the context of a

given pattern. In this scenario, a certain restriction can be modelled, by adding a part

of speech restriction on the word. For example, the word good has multiple meanings,

such as satisfactory in quality, when employed as an adjective or possession (object),

when used as a noun. When matching a synonym of good with our rule, we can restrict

this to only nouns, in which case the word well, as an adjective, is not matched.

5.4.2 Example

Given the previous context, we propose a first example of a Syn!bad pattern.

Based on the rules described above, we compile the following Syn!bad pattern,

which also contains most of the features of the language:

$name <#*>? do you <VB*>* [some|RB*] [water#object]
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s4

s1 s2* s3# do s5you

s6

<VB>

s4 [some|RB][water]

s4

s7

<VB>

Figure 5.6: A Syn!bad example, presented as an automaton

• $name item represents a context free variable, which matches any single word and

retrieve it as the name variable.

• <#*>? is an optional token that can match any punctuation mark. Moreover, the

#* represents a generic part of speech group matching punctuation marks.

• do and you are precise words matched by this expression.

• <VB*>* is an none-or-many token matcher, which restricts the element to match

only a selected part of speech, in this case a verb.

• [some|RB*] represents a matcher for a synonym of the word some. Moreover, a

restriction over the part of speech is added, which matches only adverbs.

• [water#object] this token is similar to the previous one, but it matches a syn-

onym of the word water and recover the value of this word into the object variable.

In order to describe the whole matching process, the following sentence is given:

Ovidiu , do you want any aqua

The result of the matching is: $name← Ovidiu and #object← aqua, while <#*>?

matches the comma mark (,), <VB*>* matches the single verb want and any is matched

by the token [any|RB*].

5.4.3 Implementation

The Syn!bad language has two levels, one is related to the grammar model, presented

in the Appendix A. The second level concerns the implementation of this language, as

an extension to the current capabilities of our knowledge extraction platform.

The patterns are compiled into an Deterministic Finite Automaton (DFA), com-

pletely written from scratch in Java language. We choose this representation since

the DFA offers superior matching speed since the decision is mainly linear. Cox [43]

presented a series of experimental arguments to sustain this decision.

The Deterministic Finite Automaton (DFA) is a type of automaton, where each

state, for a given input, has at most one new state leading from the previous one. This

makes the navigation through the states easier, since the possibility of exploration is

always reduced to only one state or none. The finite status is given when our machine

reaches one of the terminal states and the finish condition is fulfilled.
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The simple token matchers use a simple word equality operator, whereas more com-

plex items such as part of speech matchers and synonyms require more complex func-

tions.

Concerning the part of speech restrictions, we propose two different types of labels.

One is more strict, as recommended by the Penn Part-Of-Speech Tag System [170],

which contains 45 different labels. The second is a functional grouping of the first

system, called Generic POS, and contains only 5 labels:

1. #* groups all the punctuation marks into one single category: $ # . , : ( ) " ’

2. VB* groups all the verb tags: VB, VBD, VBG, VBN, VBP, VBZ

3. RB* groups all the adverb tags: RB, RBR, RBS

4. NN* groups all the noun tags: NN, NNS, NNP, NNPS

5. JJ* groups all the adjective tags: JJ, JJR, JJS

The synonyms are currently extracted from the WordNet dictionary [123]. We use

the synset identifiers, provided by WordNet, restricted by Part of Speech, when nec-

essary. WordNet provides an index already split by part-of-speech, which makes the

restriction conditions much easier to fulfil.

All the part-of-speech restrictions, synonyms and variable names are stores as a

matching token, making possible to model our automaton as a DFA. All the tokens of

a pattern are stored as a linked multi-list.

For each state, we assign a priority to each token, which makes the matcher decision

even more simple. The top priority is assigned to the optional token, just before the

mandatory element. This is done because it is more important to match an optional

item, when possible, rather than a mandatory one. The process cannot continue without

matching all the mandatory elements, therefore since the optional item can be skipped

easily, it is important to match them before the mandatory items. The last priority is

assigned to a consumer item, which is either a skip item or a global variable (a structure

labelled $name). A skip is an element with the lowest priority assigned, which matches

everything and it is used to define matching spaces. The current implementation uses

a skip of 2 items defined by default.

Once the patterns are compiled, each one of them has an identifier assigned. These

are not mandatory to be unique, and in certain situations can be useful to have duplicate

identifiers, such as having polysemic expressions. For instance, the patterns: (hello)

and (hi there), can have the same id (id=greeting), since both represent different

forms of greetings.

When a pattern is matched, its identifier is returned, along with all the variables

matched. The variables could be global: defined as $name, or local: #name which are

defined by the part-of-speech or synonym matching tokens. For instance, the pattern

(hello $name) matches the first word that comes after hello and stores in the $name

variable, whereas the pattern hello <NN*#name>* matches the first noun that follows
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the word hello and stores it in the variable #name. In fact, the $name variable is

matching any word or punctuation mark, whereas #name variables stores the content

matched by a specific token: part-of-speech or synonym.

Patterns, among the variable retrieval feature, have another level of static labels,

name styles. A style is represented by a collection of pairs (label, value) assigned to

each pattern. The functional value of this feature is represented by the possibility to

assign a second level of annotation to a certain matcher. The label space is defined on

the whole matcher container (all the pattern matchers added on the same list), and the

label space is sparse, as well. When a matcher does not have a label defined, an ’*’ is

automatically assigned to any undefined value.

To introduce the styles, we present a short example of this functionality. Table 5.7

defines three different patterns, each one having different styles assigned. Styles are

comma separated, defined as a label=value pair.

Pattern ID Style

what do you want ? p1 relation=familiar, rudeness=high

what can i do to help you ? p2 rudeness=low

if i may ask , how could i help you ? p3 relation=polite

Table 5.7: Syn!bad pattern examples, using the style definition features

The pattern p1 has two values assigned to the styles relation=familiar and rude-

ness=high, p2 defines a value just for rudeness=low therefore the relation becomes *,

p3 has the polite value assigned to the relation. Table 5.8 summarises these results.

Style
ID

p1 p2 p3

relation familiar * polite

rudeness high low *

Table 5.8: The values assigned to each style according to the pattern definitions from Table 5.7

Using of styles is not mandatory, but offers another level of granularity for the

knowledge extraction model. The styles offer a complementary function for variable

extraction and in case of large pattern databases, it also provides more information for

the dialogue selection models and dialogue generation components.

Syn!bad is an extension to the POSIX regular expression language that employs

special elements useful for NLP applications. These elements are synonymic or part-

of-speech expressions that can be combined with regular word items. The pattern can

be grouped by their semantic function and have various styles assigned, which makes

the matching process useful for knowledge extraction and dialogue management. In

fact, this language is a critical part of the AgentSlang platform, ensuring the Natural

Language Understanding function of the system.
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5.5 AgentSlang

AgentSlang is a collection of components, created on top of the MyBlock platform, which

enables to build rich, distributed and fast IS. All the principles enumerated before for

the MyBlock platform are therefore valid for AgentSlang.

AgentSlang provides a collection of 12 stable components and 1 experimental. All

of them are presented in the following subsections, grouped by types and category.

We present the components, both from the technical perspective, with informations

for the internal channels, and component parameters. Moreover, every element, has a

functional description among with the role/usage in the AgentSlang platform, as proof

of concept for an interaction platform.

5.5.1 System components

System components are basic elements managed by the MyBlock platform, without

being specific to AgentSlang. They are described in this section only to preserve a

uniform presentation for all the elements of the platform.

Debug/Log Component

Component: org.ib.logger.LogComponent

The important aspect of the debug component is that the logging mechanism is

entirely distributed and independent. In comparison with similar platforms, we provide

exactly the same API for all the components. The logger manages the reception of

debug messages in a centralised way. The current logging component provides only

three levels of debug: critical, debug, inform. All the messages received are currently

redirected to the console, but they can be forwarded to any logging library.

In case of a Logger not being configured into the system, the Log API prints any

critical error on the console, in order to avoid missing system errors.

System Monitor Component

Component: org.ib.component.SystemMonitorComponent

Channels: system.monitor.data

The system monitor receives status messages from all subscribing components.

These status messages are re-broadcast to its subscribers, providing the source feed-

back. It acts like a proxy, by filtering any unneeded feedback.

Any component that would like to receive this feedback has to subscribe to the

system.monitor.data topic of the SystemMonitorComponent.

Component Monitor

Component: org.ib.gui.monitor.MonitorComponent
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The monitor component provides a complex set of functionalities for system mon-

itoring. Similar to the LogComponent, the monitor receives all the debug messages

from all the subscribed components. An interesting function is provided by the level

and source filters for debug messages, which makes the debug and monitoring process

easier. Figure 5.7 shows an example of a system configuration, monitored with the

Component Monitor.

Figure 5.7: The Component Monitor displays the debug log, filtered by a selected level, and
the component activation (in this case, the green component)

A second function is the component interaction graph, with a message activation

highlight. This component is rendered using GraphStream [152], which is a fast graph

rendering library, used for dynamic graphs.

The component can also subscribe to the component feedback channels, similar to

SystemMonitorComponent, and it highlights the component usage, each time a message

is processed by that element.

5.5.2 Input and Output components

Text Component

Component: org.agent.slang.inout.TextComponent

Channels: text.data

The Text Component acts both as a Source and a Sink for text data types. It

can send StringData to the system. Moreover, it can subscribe to any channel and

displays the received message as plain text. Figure 5.8 shows the main window of this

component.

Voice Proxy Component

Component: org.agent.slang.in.VoiceProxyComponent

Properties:

voiceProxy
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Figure 5.8: The Text Component has the ability to: to subscribe to multiple channels, display
all the data received and send text input

voiceBTuuid

voiceBTmac

Channels: voice.data

Accurate real-time transcription, is very challenging. A few commercial options

exist, providing a high accuracy for domain specific transcriptions. For instance, Nuance

Dragon Speech Recognition Software [133] provides a high accuracy for medical and legal

domain. Moreover, most of the modern operating systems offer accessibility support for

disabled persons, and integrate good automatic speech recognition software.

The Open Source projects, such as HTK [208], Sphinx 4 [109], Mobile Sphinx [84]

or Julius [111] are very promising from the state-of-art perspective, but the acoustic

models currently embedded in these project are very basic, without any use in real

dialogue applications. VoxForge [201] is trying, since 2005, to fill the gap between

industrial models and open source, but the accuracy of the results remains less than 60

%, for clear recorded voice. For radio quality or recordings with regular microphones,

the recognition rate is much less.

On mobile platforms, the situation seems encouraging. Due to the recent success of

the Siri [10], Google Speech API [68] and their integration with iOS and Android, other

companies decided to provide full and cheap support on their API for mobile devices.

Unfortunately, this kind of access is restricted to mobile platforms.

Based on this accuracy obtained by mobile platforms and the support for multiple

languages, we decided to integrate an Android application into our system, which would

act as a smart “microphone”, by forwarding the transcription to our system. The Voice

Proxy Component does exactly this: it acts as an entry point in the system for the

transcription provided by the Android application. All the content is forwarded to the

voice.data channel and encapsulated as a StringData type.

The proxy can be configured in two modes, depending on the access type and device

support:
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1. Socket mode, which starts a TCP server on the port given by the voiceProxy

property. This is used by the Android client application to connect. This is useful

in case both the Android device and the AgentSlang system have access to the

same network

2. Bluetooth mode, which allows the Android device to be connected as Bluetooth

pair with a computer. The voiceBTmac property provides an optional selection

by MAC address of the Bluetooth device and voiceBTuuid describes the Uni-

versally unique identifier (UUID) [143] used by the bluetooth protocol to engage

connection. An UUID is a unique descriptor, standardized by the Open Software

Foundation (OSF) as part of the Distributed Computing Environment (DCE),

and is similar to the TCP host-port pair. It provides access to certain services, in

this case bluetooth.

There is currently no restriction on the number of voice proxies to be configured

in the system, but only one Android device can be configured for each Voice Proxy

Component.

MaryTTS Component

Component: org.agent.slang.out.marytts.MaryComponent

Properties: locale

Channels: voice.data

MaryTTS [178] is one of the very popular toolkits for affective speech generation. It

provides support for German, British and American English, Telugu, Turkish, Russian

and Italian languages, maintained by DFKI Laboratory (Germany) and an experimental

support for French, provided by Speech Research Group at ParisTech (France). This

components has been part of the SEMAINE Project [175].

Our component provides a basic integration, with StringData or AnnotatedData as

input, and forwarding the speech generated content to the voice.data internal channel.

iSpeechTTS Component

Component: org.agent.slang.out.ispeech.ISpeechTTSComponent

Properties:

voice

apiKey

Channels: voice.data

iSpeech TTS [90] is a technology developed by the iSpeech Corporation, and provides

a natural voice support for a large list of languages. The support is provided on a

Software as a Service (SaaS) basis, with a flexible pricing service. It also offers support

for both desktop and mobile platforms.

Our component integrates basic support for the text-to-speech API, providing con-

figuration for two parameters: the voice, which allows the selection of the style of the
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voice, such as male or female and language, and the apikey, which is the access key to

the service.

This component demonstrates that commercial components can be integrated into

our system.

5.5.3 Natural Language Processing and Dialogue Models/Compo-

nents

Senna Annotator

Component: org.agent.slang.annotation.SennaComponent

Properties:

sennaParams

sennaPath

Channels: senna.data

Most of the processing components used in an IS use part-of-speech tagging, seg-

mentation or chunking. The part-of-speech tagging supposes a multi-label annotation

task, with labels based on the Penn Tag Set Guideline [170] for English . It is one

of the classical challenges for Natural Language Processing and several toolkits have

implementations in almost every programming language.

The segmentation task (chunking), which is also an annotation task, involves split-

ting the sentence into syntactically correlated parts of words. It has been originally

proposed by Abney in 1991 [2]. Since then, the problem has been proposed into several

challenges, including the latest CoNLL-2000 task [194], which remains the benchmark

for this issue.

The Name Entity Recognition task involves the detection of word structures which

may be points of interest, such as places, names or organisations. This task is highly

linked to the context and sometimes subjective. The latest benchmark for this task

is proposed by CoNLL-2003 task[195], which describes the problem from the language

independence aspect.

SENNA [39] proposes a solution to all these Natural Language Processing tasks.

The system obtains state of art precision for English language5, or better, by training a

large scale neural network, by preserving the model as problem independent. Moreover,

SENNA offers superior speeds compared to similar systems.

Our current version of AgentSlang is written in Java and SENNA is coded in stan-

dard C, so we decided to integrate the toolkit as an external execution point. This

involves the configuration of the sennaPath, which points to the exact location of the

executable. Moreover, SENNA can be configured to solve a certain set of tasks, from all

the ones proposed: chunking, part-of-speech tagging or named entity recognition. The

sennaParams configures the set of tasks to be executed. The results are published on

the senna.data feed as an AnnotatedData, where each level corresponds to the selected

SENNA task.
5The Tag Set used for annotation is the one recommended by the CoNLL competition task
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Metaphone Encoding Component

Component: org.agent.slang.annotation.MetaphoneEncodingComponent

Channels: metaphone.data

In dialogue and web semantics, the accuracy of the results can be sometimes de-

graded by the precision of the transcription. A simple solution to this problem is to

encode all the words from the original query into a phonetic form, rather than using the

original words. This is linked to the fact that strong phonetic languages, such as English,

need a good pronunciation or spelling to obtain very accurate results. In particular, the

precision of the transcription decreases dramatically for non-native speakers.

The Metaphone encoding [148] is a proposition to solve this problem. It has been

proposed by Lawrence Philips in 1990, as an improvement of the original Soundex

algorithm [27]. A second version of this algorithm was created, called DoubleMetaphone

[149], which included encoding rules for non-english words familiar to americans, as well.

Currently, there exists a third commercial-version of this algorithm, Metaphone 3 [147],

which covers 99 % of all the words used in American English. The principle of all these

algorithms is to construct a set hand-crafted rules to encode a word according to the

phonetic rules of American English, which creates a high similarity for words with close

pronunciations.

In MyBlock, we use the DoubleMetaphone version of the algorithm, which takes a

string as an input, and provides the phonetic encoding to the metaphone.data channel.

This strategy is efficient only for English, since the algorithm was created to cover the

rules of this language.

Template Extractor Component

Component: org.agent.slang.dm.template.TemplateExtractor

Properties:

dialogueModel

commandModel

Channels:

templateExc.dialogue.data

templateExc.command.data

The Template Extractor Component is based on the Syn!bad language and is used

to collect all useful information from a sentence. The current model is hand-crafted and

has 10 patterns for presenting the agent, the description of capabilities and introducing

the speaker.

The patterns are grouped into two different models: the dialogue and the command.

The only difference is the semantics of the patterns. For commands, the pattern matcher

is configured in a very strict mode, where no synonyms are explored, and the sentence

should start with the first word of the pattern. This decision was made due to the

semantic strictness of a command and to avoid any ambiguity in the interpretation
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process. All the template identifiers extracted using the command model are sent via

the templateExc.command.data channel.

The dialogue model allows the usage of synonyms and partial matchings. Moreover,

the matching process is not mandatory to start from the beginning of the sentence.

The template identifiers resulting from the matching process are send to the template-

Exc.dialogue.data channel.

Command and Dialogue Interpretor

Component: org.agent.slang.dm.template.CommandInterpreter

Properties: commandModel

Channels: command.data

Component: org.agent.slang.dm.template.DialogueInterpreter

Properties: dialogueModel

Channels: dialogue.data

The two components for command and dialogue interpretation use the same reactive

model for behaviour generation. The current implementation maps directly a reply

action to a pattern identifier, extracted with the TemplateExtractor. The reply action

represents a sentence or a command (in case of the Command Interpretor) that is

interpreted afterwards. The reply action patterns allow variable substitution, similar to

the Syn!bad language:

item1 item2 $variable1 item3 $variable2 item4

where item1,item2,item3,item4 are actual words used to generate the reply and

$variable1,$variable2 are two variables. In the current implementation, since the

reply action is mapped directly to the pattern identifier, the variable names are mapped

as well to the variables extracted previously. If no such variable can be extracted, the

process fails and no pattern is generated.

The Dialogue Interpreter needs a dialogue model which describes the generation

patterns and builds a reply action which is transmitted to the dialogue.data channel.

The Command Interpretor does the same, but it can execute or generate a system

command (i.e. turn on/off a switch, play a song).

5.5.4 Affective Feedback

Valence Extraction Component

Component: org.agent.slang.feedback.ValenceExtractorComponent

Channels: valence.data

The Valence Extraction Component is a generic template for any component that

extracts valence, from any type of data. Our approach is an affect oriented system,

where multiple Valence Extractors fusion their data. We believe that the feedback
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offered by these components could improve the quality of the whole system, as concluded

in the Chapter 2 and 3.

The architecture of this component is simple and intuitive, so the implementation

of any valence extraction should be straightforward. As a case study, we present two

different approaches to implement such an extractor.

1. A multi-modal valence extractor, build on top of a fusion model

2. A pattern based model, build on top of the affective contextonyms

The model for the multi-modal valence extractor has been described previously, in

Chapter 2 (Section 2.7). Assuming the usage of an NGram + Smile fusion model, this

algorithm takes as an input a sentence annotated with the part of speech of each word

and a Smile intensity, extracted using a Smile extraction algorithm (i.e. OKAO6). The

sentence is used to extract the NGram features, while the Smile intensity is converted

to a Smile level, according to our strategy presented in Chapter 2 (Subsection 2.7.4).

The pattern based model, using the affective contextonyms, is more complex and

requires using multiple techniques described along this thesis. First, the affective con-

textonyms model is presented in Chapter 3 (Section 3.4). It consists in a context

graph model for affective words. Since the usage of this graph is not as simple as other

linguistic resources and requires multiple queries in graph structured data, we can com-

pile it as a series of Syn!bad patterns, with a different style label associated to each

word. Moreover, for some contextonyms, a synonymic collapse can be allowed:

1. In case of direct WordNet [123] synsets, where the synonyms are not found as part

of another contextonym

2. Two contextonyms can be collapsed if the valences of each synonym words is

the same and no words without correspondence can be found in any of the two

contextonyms

In this case, a contextonym consisting in the words (cyclone, tropical and island)

generates the following Syn!bad pattern: [cyclone] tropical island, with the fol-

lowing style associated: w1=-0.125,w2=-0.25,w3=-0.25. A model of such patterns

can be compiled, making the whole pattern matching process easier by using Syn!bad

language.

Summary

Table 5.9 compiles a list of all the available AgentSlang components, grouped by their

function in the system architecture.

6http://www.omron.com/r_d/coretech/vision/okao.html
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Component Function Type

Log Component Debug/Logging Sink

System Monitor Component Event Monitoring Mixed

Component Monitor Platform Monitoring Sink

Text Component Text Input/Output Mixed

Voice Proxy Component Speech Input Source

MaryTTS Component Speech Synthesis Sink

iSpeechTTS Component Speech Synthesis Sink

Senna Annotator POS Tagging, Chunking, NER Mixed

Metaphone Encoding Component Phonetic Encoding Mixed

Template Extractor Knowledge Extraction Mixed

Dialogue Interpreter Dialogue Generation Mixed

Command Interpreter Dialogue and Command Generation Mixed

Valence Extractor Component Valence Extraction Mixed

Table 5.9: A summary of all existing AgentSlang components

5.6 Discussion

Table 5.10 presents a comparison of key features across main state of art systems and

AgentSlang. The core functions of our approach are the Dialogue Management and

Affect Oriented design, based on specific components that support this claim. Currently

only AgentSlang, Semaine and Companions projects use Affect Oriented features. For

Dialogue Management, AgentSlang, Companions, Mirage and GECA offers it. VHMsg

is more a middleware library for building interactive agents, with no specific system

implementations. On the system management aspect, currently only AgentSlang and

Semaine provides tools for such a purpose, whereas the real-time system messages, that

provide informations about the state and status of all the components, are supported

only by AgentSlang.

On the technical level, several advantages of AgentSlang could be presented. Our

platform uses MyBlock as a middleware, which is based on ZeroMQ. These platforms are

actively supported and available on multiple operating systems: Android, Linux, Mac

and Windows. In comparison, ActiveMQ is available only for Linux, Mac and Windows.

Moreover, ZeroMQ is providing support for all major programming languages, which

gives the opportunity to migrate MyBlock to other environments. Currently we use

only the publish/subscribe and request/reply pattern over TCP sockets offered by the

ZeroMQ. ZeroMQ also supports inter-process communication and shared queues, which

could increase the communication speed for components found on the same machine.

Two of the major differences between MyBlock and other platforms are that we

focus on data-oriented design rather than the source and by not using blackboards. We
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consider that the data source is not important for Distributed Interactive System, since

trust among components is guaranteed by the builder of the system. At most, compo-

nents could provide a level of confidence for certain tasks. Moreover, the blackboard

as a fundamental mechanism for knowledge sharing in AI is replaced by the services,

modelled by MyBlock. A service offers similar functionality through the request/reply

protocol, being more flexible and offering more robust data synchronisation mechanisms.

Finally, we have shown that the performance of ZeroMQ and MyBlock is better

than ActiveMQ and Semaine, which are the platforms with the best performance in our

study.

MyBlock and AgentSlang offer a clear separation of the platform and application

level, according to their role. AgentSlang is a library that offers several component that

can be easily implemented and transferred to other platforms. This offers the possibility

to implement various algorithms, from the same category into a common platform. By

doing so, one is able to benchmark the performance of various components and choose

the most suitable for its purpose. Currently, components proposed include automatic

speech recognition, speech synthesis, knowledge extraction, dialogue management and

affective feedback extraction.

AgentSlang is a platform build around the idea of Open Source software for Dis-

tributed Interactive Systems that offers Affective Feedback Detection and Dialogue

Management. Currently it is the only system offering all these features (Table 5.10).
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AgentSlang Semaine Companions Mirage GECA VHMsg

Middleware
Platform

MyBlock (ZeroMQ) ActiveMQ Inamode Psyclone OpenAir ActiveMQ

Integration
Approach

pub/sub pub/sub plain socket blackboard blackboard pub/sub

Operating
Systems

ALMW1 LMW2 Unknown LMW2 Unknown LMW2

Data
Interface

custom Objects multiple3 XML string XML string

System
Management

Yes Yes (No) No No No

System
Events

Yes No (No) No No No

Actively
Maintained

Yes4 Yes Unknown (No) (Yes) (Yes)

Platform
Licence

GPL+5 LGPL Proprietary Unknown Unknown LGPL

Dialogue
Management

Yes No Yes (Yes) Yes No

Affect
Oriented

Yes Yes Yes No No No

1Android, Linux, Mac, Windows

2Linux, Mac, Windows

3String, XML, binary data converted to String

4Currently under development

5GPL+ means GPL and French CeCILL

Table 5.10: A comparison of key features of AgentSlang and existing State of Art Interactive Systems
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Conclusion

The issues covered by this thesis are linked to various Affective Computing and Interac-

tion problems. The computer should be able to detect emotions and reply accordingly.

The Affective Computing part is represented by several Detection Algorithms: a

text-based emotion classification method using Self Organizing Maps and a valence

classifier based on multi-modal features and Support Vector Machines. Moreover, due

to an observation made while developing the classification algorithms and since one

representative dictionary for sentiment analysis (SentiWordNet) carries a large number

of conflicts, we also proposed a method to solve these conflicts. From the Interaction

perspective, this thesis approaches two issues: an experiment created for collecting rich

interactive data, in a story telling environment and an architecture for a Distributed

Interactive System.

Detection of User’s Affective Feedback

The field of Emotion Detection focuses on two major aspects: creating better detection

algorithms and building more accurate affective dictionaries. We approached both of

these issues in this thesis.

Our first experiment is based on a Self Organizing Map classifier, which is easy to

train, but very versatile for fuzzy classification. We used a feature extraction using

a Latent Semantic Analysis on text, which served as support for our classifier. The

approach has been validated on a well known corpus for semantic affect recognition:

SemEval 2007, task 14. For this purpose, we managed to obtain a model that provides

a good balance between precision and recall, for the given corpus.

This first approach uses only text to extract features. Several recent studies in Affec-

tive Computing propose multi-modal approaches. Our second experiment is conducted

as a multi-modal classification study on a Youtube corpus. The smile, as a gesture fea-

ture, is fused with several other features extracted from textual data. For this purpose,

we generate different feature configurations to study the smile influence. These features

are used with a two level linear Support Vector Machine, which offers the possibility to

study in more details the classification process. On the Youtube corpus, by using this

approach, we managed to obtain the best results, compared to the original Morency et

al. [126] approach, with a method that is fast enough for an interactive system.

Several issues regarding the classification precision and recall for Affective Comput-

ing are linked with the dictionaries used. These are either manually constructed with a

size too small to cover all the semantic cases or very large in size but carrying a large

number of internal conflicts. Decreasing the number of inconsistencies in a dictionary

directly improves the precision of the method using it. We proposed to decrease the

number of inconsistencies of an existing dictionary (SentiWordNet) by introducing con-

text. The context is modelled as a contextonym graph, built using a subtitle database.

We managed to obtain a low conflict rate, while the size of the dictionary is preserved.

By using our method, our goal is to obtain a large contextualised affective dictionary
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that can be used for emotion classification tasks.

The contextonym is modelled as a strong semantic relation between the terms, sim-

ilar to synonyms. In fact, these are cliques in a graph of word co-occurrences. Since

none of the existing algorithms could handle large and dynamic graph structures, the

clique extraction algorithm used for this purpose was designed for building the con-

textonym graph. Our algorithm, the Dynamic Distributable Maximal Clique Algorithm

(DDMCE), was successfully validated on various random generated databases. One of

the strong points of this algorithms is the it addresses the issue of processing in a

distributable way large and dynamic data simultaneously. Moreover, the most impor-

tant validation is represented by the ability to successfully process the data needed to

generate our contextonyms model.

Affective Interactive Systems

From the interaction perspective, in order to obtain a rich corpus for the problem of

Child-Machine interaction, we created an innovative storytelling environment. From the

psychological perspective, this experiment is a validation of the interactive engagement

between a child and a virtual character. We measured the difference between a setup

having the virtual character as a narrator or a psychologist in video conference mode,

by using various communicative features. The only difference, we observed, between

the two scenarios is in the communication modality. This experiment also lead to the

development of a new Wizard of Oz platform (OAK), that allows online annotation of

the data. This environment allows the design of various reactive dialogue models, which

can be tested and integrated into our future system.

The final aspect of this thesis is the proposition of a new architecture for a Dis-

tributed Interactive System. By using a component based design approach, we model a

component structure that is light and simple enough to allow the integration of any ex-

isting algorithm. We propose several components for knowledge extraction (Syn!bad),

reactive dialogue management and affective feedback detection, among other classic

components (i.e. Automatic Speech Recognition, Text to Speech). This platform in-

tends to be the foundation for several affect detection algorithms, starting with all the

algorithms previously presented.

Future work

From the affect detection perspective, the multi-modal approaches should be investi-

gated further. Our experience with the ACAMODIA Project showed that in practice, no

modality carries more importance than the others. In the storytelling experiment, the

feedback is sometimes recovered from speech, gestures, postures, smiles or eye-gazing.

In almost all the situations, the feedback is recovered only from one modality, while

the other are missing or occluded. For example an occlusion phenomenon in speech ap-

pears when a noise covers the dialogue making the word recognition impossible, while

an occlusion phenomenon in gestures appears for instance in a situation where the face
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is covered by the user’s hand. Working with children makes this problem more difficult

because all these issues appear with a high frequency.

One of the current limitations of our valence detection algorithms is not to use

valence shifters [155] during the experiments. One of the classic example of this category

is by introduction the negation as part of the models. In practice, we taught about

the negation in our multi-modal experiment, but it would not influence the final results

because the presence of negated phrases was less than 1 % of the whole corpus. Another

perspective for this problem is offered by the usage of “valence intensifiers”, which similar

to the valence shifters act as modifiers for certain words. Our initial hypothesis was that

the smile would act as an intensifier for text content, similar to the “valence intensifiers’.

This was not confirmed by our multi-modal experiment unfortunately.

Currently, from the machine learning perspective, two algorithms are used during

this thesis. One is the Self-Organizing Maps and the second is the linear SVM. In the fu-

ture, more complex models could be investigated, such as Neural Networks, multi-kernel

SVM, SVM with an RBF kernel or CRF. The last model has been particularly success-

ful in the modelling of linguistic resource and has been used in the NLP community to

describe generative models.

From the dictionary conflict resolution, our current approach uses subtitles to com-

pile a non-formal, dialogue style, linguistic model. In future, for different language

styles a corresponding context graph could be constructed. This could improve the de-

tection results for more formal environments. In the end, a large context structure can

be compiled, with words clustered by style, domain and part-of-speech. Each of these

propositions raises issues related to the Big Data Processing domain, which currently

have not been discussed by the thesis.

Another idea that could be studied as a perspective is not to attach the valences

to each word in a contextonym, but to the whole clique. This could lead to more

stable results and less conflicts. Nevertheless, a different set of strategies for valence

distribution need to be proposed for this task.

One of limitations of our current context model is that we did not conduct multiple

experiments on various window size. This could build richer semantic relations between

distant words of a phrase. In the end, this is a problem of window calibration. Moreover,

in the same context of future investigations in the influence of certain parameters over

our context model, a less aggressive filtering algorithm could be applied. This was

done mainly for performance reasons so far, but with the current optimisations of the

DDMCE algorithm, this could be redone.

Another aspect that has not been covered by this thesis is the investigation of

alternative models for the context graphs. Currently the context is modelled as a

“strong clique”, which means that all the words that are part of this structure need

to be linked with all the other words. From the linguistic perspective, in order to

model this relation very accurately, you need a very large linguistic resource to cover

all the context situations. Moreover, this problem could be explored through a “soft

clique” perspective, where the words do not have links with all the other parts of this
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structure. In fact, this idea would raise some theoretical issues related to graph theory.

In the end, we believe that the problem itself is just a matter of calibrating the filtering

parameters and finding linguistic resources large enough to model the context (such as

movie subtitles).

The AgentSlang system offers a good foundation for building Affective Interactive

Systems. Nevertheless, the number of usable components needs to increase. Currently,

we propose at least one element to solve each representative problem in our design

flow, but more need to be integrated. The dialogue management module, one of the

critical parts of our proposition, is currently a reactive approach. The state based model,

developed for the ACAMODIA Project needs to be integrated as well. Moreover, a more

complex management based on Dialogue Games Theory [51], like the one we proposed

for Ales et al. [6], could be developed.

Our final proposition, MyBlock has been validated only in terms of performance

against a similar system, the SEMAINE platform. The technical validation is only

the first step and a more extensive study of integration and acceptability needs to be

conducted with human users. For this purpose, we propose two directions: a) a demon-

strator having only Affective Feedback detection and synthesis capabilities, with a basic

reactive dialogue management, similar to the Sensitive Artificial Listener proposed by

SEMAINE b) a system having complex dialogue management based on ACAMODIA

Project or Dialogue Games Theory [6, 51]. The first direction allows to compare our

platform with SEMAINE, using the same scenario. Whereas, the second approach is

more complex and integrates all the components currently developed (i.e. Affective

Feedback Detection, Knowledge Extraction, Dialogue Management). This study can be

conducted in a storytelling environment, similar to ACAMODIA, or a scenario depen-

dent task, such as “How was your day ?” proposed by the Companions Project.

140



Part IV

Appendix

141





APPENDIX A

Syn!bad Syntax

The BNF Grammar of the Syn!bad syntax is defined as following:

〈expression〉 ::= 〈token〉 ‘␣’ 〈expression〉 | 〈token〉

〈token〉 ::= 〈pattern〉

| 〈pattern〉 ‘*’

| 〈pattern〉 ‘?’

| 〈pattern〉 ‘{’ 〈number〉 ‘,’ 〈number〉 ‘}’

〈pattern〉 ::= 〈word〉

| ’<’ 〈POS_Structure〉 ’>’

| ‘[’ 〈synonym〉 ‘]’

| ‘$’ 〈variable〉

〈POS_Structure〉 ::= 〈POS 〉 (‘#’ 〈variable〉)?

〈POS 〉 ::= 〈PennPOS 〉

| 〈GenericPOS 〉

〈synonym〉 ::= 〈word〉 (‘|’ 〈POS 〉)? (‘#’ 〈variable〉)?

〈number〉 ::= [1-9] [0-9]*

〈word〉 ::= [a-z]+

〈variable〉 ::= [a-z0-9]+
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〈PennPOS 〉 ::= ‘JJ’ | ‘RB’ | ‘DT’ | ‘TO’ | ‘RP’ | ‘RBR’ | ‘RBS’ | ‘LS’

| ‘JJS’ | ‘JJR’ | ‘FW’ | ‘NN’ | ‘NNPS’ | ‘VBN’ | ‘VB’ | ‘VBP’

| ‘PDT’ | ‘WP$’ | ‘PRP’ | ‘MD’ | ‘SYM’ | ‘WDT’ | ‘VBZ’ | ‘¨’

| ‘#’ | ‘WP’ | ‘’’ | ‘IN’ | ‘$’ | ‘VBG’ | ‘EX’ | ‘POS’ | ‘(’

| ‘VBD’ | ‘)’ | ‘.’ | ‘,’ | ‘UH’ | ‘NNS’ | ‘CC’ | ‘CD’ | ‘NNP’

| ‘PP$’ | ‘:’ | ‘WRB’

〈GenericPOS 〉 ::= ‘#*’ | ‘VB*’ | ‘RB*’ | ‘NN*’ | ‘JJ*’
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APPENDIX B

DDMCE: Running times for Static Graphs

Time Cliques

n ρ c x̄ σ2 σ2

/x̄ x̄ σ2 σ2

/x̄

1
,0
00

.01 1 .342 .032 .092 4,723.30 63.62 .013

.01 2 .250 .004 .015 4,723.30 63.62 .013

.01 4 .240 .014 .060 4,723.30 63.62 .013

.03 1 .598 .011 .019 10,486.00 48.66 .005

.03 2 .557 .019 .034 10,486.00 48.66 .005

.03 4 .543 .027 .050 10,486.00 48.66 .005

.05 1 .776 .014 .019 21,158.40 254.84 .012

.05 2 .836 .065 .078 21,158.40 254.84 .012

.05 4 .996 .069 .069 21,158.40 254.84 .012

.07 1 .992 .015 .015 45,846.40 479.08 .010

.07 2 .886 .100 .113 45,846.40 479.08 .010

.07 4 1.071 .077 .072 45,846.40 479.08 .010

.10 1 1.617 .029 .018 99,671.90 940.76 .009

.10 2 1.215 .034 .028 99,671.90 940.76 .009

.10 4 1.433 .164 .115 99,671.90 940.76 .009

.15 1 4.683 .112 .024 349,312.90 5,613.65 .016

.15 2 3.217 .313 .097 349,312.90 5,613.65 .016

.15 4 3.266 .114 .035 349,312.90 5,613.65 .016

.20 1 16.819 .432 .026 1,203,453.90 14,956.69 .012

.20 2 9.527 .249 .026 1,203,453.90 14,956.69 .012

.20 4 9.781 .251 .026 1,203,453.90 14,956.69 .012

.25 1 67.404 5.376 .080 4,334,551.90 67,956.84 .016

.25 2 37.192 1.131 .030 4,334,551.90 67,956.84 .016

.25 4 35.882 .470 .013 4,334,551.90 67,956.84 .016
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Time Cliques

n ρ c x̄ σ2 σ2

/x̄ x̄ σ2 σ2

/x̄

.30 1 281.932 8.606 .031 15,935,818.00 359,968.05 .023

.30 2 160.485 12.376 .077 15,935,818.00 359,968.05 .023

.30 4 149.339 4.244 .028 15,935,818.00 359,968.05 .023

.01 1 1.687 .109 .064 96,514.20 252.58 .003

5
,0
00

.01 2 1.266 .041 .033 96,514.20 252.58 .003

.01 4 1.324 .086 .065 96,514.20 252.58 .003

.03 1 9.010 .195 .022 514,312.60 1,791.44 .003

.03 2 5.673 .171 .030 514,312.60 1,791.44 .003

.03 4 5.363 .122 .023 514,312.60 1,791.44 .003

.05 1 30.805 1.731 .056 1,789,995.60 4,671.97 .003

.05 2 18.585 .484 .026 1,789,995.60 4,671.97 .003

.05 4 17.828 .142 .008 1,789,995.60 4,671.97 .003

.07 1 90.080 .457 .005 4,081,340.80 10,908.97 .003

.07 2 54.499 .654 .012 4,081,340.80 10,908.97 .003

.07 4 52.718 .763 .014 4,081,340.80 10,908.97 .003

.10 1 408.919 6.737 .016 18,442,189.70 98,336.50 .005

.10 2 245.741 7.739 .031 18,442,189.70 98,336.50 .005

.10 4 235.444 3.191 .014 18,442,189.70 98,336.50 .005

.01 1 13.114 .436 .033 349,267.60 393.07 .001

1
0
,0
00

.01 2 9.522 .539 .057 349,267.60 393.07 .001

.01 4 9.246 .994 .108 349,267.60 393.07 .001

.03 1 99.625 1.685 .017 3,738,091.30 7,663.35 .002

.03 2 62.055 .973 .016 3,738,091.30 7,663.35 .002

.03 4 57.786 .471 .008 3,738,091.30 7,663.35 .002

.05 1 467.644 2.260 .005 12,177,490.30 24,768.75 .002

.05 2 286.653 2.708 .009 12,177,490.30 24,768.75 .002

.05 4 269.613 2.972 .011 12,177,490.30 24,768.75 .002

.07 1 1,768.328 42.127 .024 42,794,881.20 131,372.56 .003

.07 2 1,075.273 8.607 .008 42,794,881.20 131,372.56 .003

.07 4 1,015.318 10.543 .010 42,794,881.20 131,372.56 .003

.10 1 10,550.762 254.201 .024 230,401,556.50 440,500.61 .002

.10 2 6,379.845 49.041 .008 230,401,556.50 440,500.61 .002

.10 4 6,068.725 51.074 .008 230,401,556.50 440,500.61 .002
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APPENDIX C

DDMCE: Running times for Dynamic Graphs

Time Cliques

n ρ c x̄ σ2 σ2

/x̄ x̄ σ2 σ2

/x̄

1
,0
00

.01 1 .029 .006 .206 18.10 12.07 .667

.01 2 .021 .003 .127 18.10 12.07 .667

.01 4 .022 .002 .109 18.10 12.07 .667

.03 1 .061 .010 .162 141.30 43.58 .308

.03 2 .043 .009 .215 141.30 43.58 .308

.03 4 .043 .010 .228 141.30 43.58 .308

.05 1 .119 .013 .111 547.80 110.09 .201

.05 2 .098 .013 .132 547.80 110.09 .201

.05 4 .101 .015 .152 547.80 110.09 .201

.07 1 .210 .032 .150 1,479.00 373.68 .253

.07 2 .164 .023 .139 1,479.00 373.68 .253

.07 4 .160 .024 .150 1,479.00 373.68 .253

.10 1 .483 .041 .084 4,614.20 873.73 .189

.10 2 .388 .040 .102 4,614.20 873.73 .189

.10 4 .365 .051 .141 4,614.20 873.73 .189

.15 1 1.037 .074 .071 25,820.00 3,633.32 .141

.15 2 .906 .062 .069 25,820.00 3,633.32 .141

.15 4 1.015 .125 .123 25,820.00 3,633.32 .141

.20 1 2.360 .223 .094 117,226.10 18,193.51 .155

.20 2 1.852 .178 .096 117,226.10 18,193.51 .155

.20 4 2.069 .145 .070 117,226.10 18,193.51 .155

.25 1 8.501 .616 .072 539,246.20 46,820.70 .087

.25 2 5.381 .421 .078 539,246.20 46,820.70 .087

.25 4 5.665 .446 .079 539,246.20 46,820.70 .087
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Time Cliques

n ρ c x̄ σ2 σ2

/x̄ x̄ σ2 σ2

/x̄

.30 1 40.488 6.417 .158 2,350,002.50 263,813.37 .112

.30 2 22.151 2.438 .110 2,350,002.50 263,813.37 .112

.30 4 21.711 2.341 .108 2,350,002.50 263,813.37 .112

.01 1 .125 .015 .120 526.50 127.99 .243

5,
00

0

.01 2 .099 .007 .069 526.50 127.99 .243

.01 4 .100 .008 .078 526.50 127.99 .243

.03 1 .541 .054 .101 6,852.10 1,378.91 .201

.03 2 .449 .063 .141 6,852.10 1,378.91 .201

.03 4 .432 .062 .144 6,852.10 1,378.91 .201

.05 1 1.267 .205 .162 45,015.00 6,977.27 .155

.05 2 1.103 .160 .145 45,015.00 6,977.27 .155

.05 4 1.102 .118 .107 45,015.00 6,977.27 .155

.07 1 3.854 .360 .094 148,254.00 14,751.70 .100

.07 2 2.804 .255 .091 148,254.00 14,751.70 .100

.07 4 2.746 .162 .059 148,254.00 14,751.70 .100

.10 1 19.324 1.704 .088 880,500.50 80,173.54 .091

.10 2 11.875 1.055 .089 880,500.50 80,173.54 .091

.10 4 11.580 .931 .080 880,500.50 80,173.54 .091

.01 1 .292 .049 .166 1,704.00 411.13 .241

1
0,
0
00

.01 2 .228 .033 .145 1,704.00 411.13 .241

.01 4 .194 .035 .180 1,704.00 411.13 .241

.03 1 1.788 .133 .074 53,421.20 4,502.01 .084

.03 2 1.405 .131 .093 53,421.20 4,502.01 .084

.03 4 1.593 .114 .071 53,421.20 4,502.01 .084

.05 1 11.138 .917 .082 292,509.80 26,858.74 .092

.05 2 7.247 .647 .089 292,509.80 26,858.74 .092

.05 4 6.687 .533 .080 292,509.80 26,858.74 .092

.07 1 59.519 4.347 .073 1,519,681.60 114,156.32 .075

.07 2 37.237 2.667 .072 1,519,681.60 114,156.32 .075

.07 4 34.676 2.517 .073 1,519,681.60 114,156.32 .075

.10 1 491.325 26.862 .055 11,486,101.10 686,248.56 .060

.10 2 301.977 17.171 .057 11,486,101.10 686,248.56 .060

.10 4 282.626 16.634 .059 11,486,101.10 686,248.56 .060
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