Recognizing emotions in short texts

Ovidiu SERBAN(1,2), Alexandre PAUCHET(1) AND Horia F. POP(2)

email: ovidiu.serban@insa-rouen.fr

Objective

Emotion detection is increasingly used in Conversational Agents to create an adapted reply channel to the user’s affective state. In this context, we propose a method to detect emotions in short texts (i.e. in texts whose size is similar to dialog utterances). Our goal is to design a model to detect the dominant affective state produced by short texts onto a reader and to classify them into six clusters, corresponding to Ekman’s psychological theory.

In this paper, the corpus consists of newspaper headlines, from SemEval 2007, task 14 [SM08]. The corpus was chosen because of the appropriate size of its elements and their high emotional content. Since the methods presented in the paper, related to the corpus do not offer a good accuracy, we introduce a new classification mechanism based on the Self Organizing Maps. Also, our approach can be easily transposed to other contexts such as chat logs, forums or oral transcripts.

Related work

Psychological approaches:
- Charles E. Osgood: emotions induction through text [OMM75]
- WordNet Affect [SV04], WordNet annotated with 6 emotion (Ekman’s annotation scheme)
- ConceptNet [LS04], mainly used for semantic disambiguation

Approaches based on ontology and WordNets:
- WordNet Affect [VSS05] or chat logs [MPI05]
- Corpus based methods: SemEval 2007, task 14 [SM08]
- Machine Learning approaches based on different feature extractors and classifiers: [ARS05], [DA08], or [DCS05]

Corpus examples

<table>
<thead>
<tr>
<th>A</th>
<th>D</th>
<th>F</th>
<th>J</th>
<th>Sad</th>
<th>Sur</th>
<th>Headlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>0.25</td>
<td>red reason to be go</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>0.94</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>0.96</td>
<td>-</td>
<td>-</td>
<td>happy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>0.97</td>
<td>0.97</td>
<td>three from alive in meaning Russian story report</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: Headline from the training corpus, presented with 6-emotion scores.

Corpus description

The chosen corpus for our experiment is the one from SemEval 2007, task 14 [SM08], proposed at the conference with the same name. The data set contains headlines (newspaper titles) from major websites, such as New York Times, CNN, BBC or the search engine Google News.

The corpus was manually annotated by 6 different persons. They were instructed to annotate the headlines with emotions according to the presence of affective words or groups of words with emotional content. The annotation scheme used for this corpus is the basic six emotions set, presented by Ekman: Anger, Disgust, Fear, Joy(Happiness), Sadness, Surprise. In situations where the emotion was uncertain, they were instructed to follow their first feeling. The data is annotated with a 0 to 100 scale for each emotion.

Anger, Disgust, Fear, Joy(Happiness), Sadness, Surprise. In situations where the emotion was uncertain, they were instructed to follow their first feeling. The data is annotated with a 0 to 100 scale for each emotion. The authors of the corpus proposed a double evaluation, for both valence and emotion annotated corpus, on a fine-grained scale and on coarse-grained scale. For the fine-grained scale, for values from 0 to 100 (-100 to 100, for valence), the system results are correlated using the Pearson coefficients computed in the inter-annotator agreement. The second proposition was a coarse-grained encoding, where every value from the 0 to 100 interval is mapped to either 0 or 1 (0 = [0,50) , 1 = [50,100]). Considering the coarse-grained evaluation, a simple overlap was performed in order to compute the precision, recall and F-measure for each class.

Conclusions

The results are not surprising, because the LSAAll emotions offers a good coverage over the emotional words, but its synonym expansion algorithm introduces a lot of noise in the method, and therefore offers a very poor precision. UPAR7 leads in some cases to a good precision, due to its analytical nature, but it lacks in recall. Our system is a good compromise between precision and recall, as F1 measure shows.

We present a method for recognizing emotions in short texts, designed to be integrated into an Embodied Conversational Agent. In other words, the length of the analyzed texts corresponds to the length of utterances during a dialog.

References